Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options
Timothy J. Kleinig and Robert Vink

School of Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
Correspondence to Professor Robert Vink, PhD, Chair of Neurosurgical Research, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
Tel: +61 8 8303 4533; fax: +61 8 8303 5384; e-mail: Robert.Vink@adelaide.edu.au

Current Opinion in Neurology 2009, 22:294–301

Introduction
Both ischemic stroke and intracerebral hemorrhage (ICH) elicit brisk inflammatory responses, which appear, on the whole, deleterious [1,2]. However, poststroke inflammation also has beneficial aspects, such as clearing cell debris and iron, and encouraging plasticity, neurogenesis and neovascularization. The inflammatory response is similar in both ischemic and hemorrhagic stroke, with several important differences [1–3]. No anti-inflammatory therapy in either condition has been translated successfully into clinical practice.

The review considers those recent studies in which authors have directly targeted (or elucidated) the poststroke immune response. It focuses on several novel findings and is prefaced by simplified summaries of preexisting knowledge to provide context in which to place these findings. Several comprehensive reviews of inflammation following hemorrhagic and ischemic stroke have been published recently [1–4] and the reader is referred to these articles for more complete background information.

Ischemic stroke overview
The inflammatory response to ischemic stroke is summarized in Fig. 1. Oxygen–glucose deprivation, reactive oxygen species, activated proteases, complement and factors released from necrotic cells rapidly lead to up-regulation of proinflammatory pathways in neurons, astrocytes, microglia, oligodendrocytes, pericytes, endogenous mast cells and cerebrovascular endothelial cells. Chemokines and cytokines are secreted, microglia activated and endothelial adhesion molecules expressed. Leucocytes (predominantly neutrophils but also monocytes) marginate and infiltrate in increasing numbers within several hours. Marginating leucocytes may plug cerebrovascular microvessels, worsening microvascular perfusion and/or preventing effective reperfusion. Lymphocytes infiltrate...
later and in fewer numbers. Macrophages (both microglia-derived and blood-derived) are visible within 24 h, with decreasing numbers of neutrophils seen within 48 h.

Activated microglia and infiltrating inflammatory cells secrete proinflammatory mediators that amplify the inflammatory response, as well as various effector molecules (proteases, prostaglandins and reactive oxygen species such as nitric oxide via inducible nitric oxide synthase), which can directly damage cells, vasculature or extracellular matrix. Cytokines may also directly lead to cell death. Damage to the endothelium and other components of the blood–brain barrier can lead to uncontrolled vasogenic edema, microvascular ischemia or, if damage is severe enough, hemorrhagic transformation of the infarct. Reperfusion, which may occur spontaneously or therapeutically, can increase reactive oxygen species formation and thus inflammation.

Intracerebral hemorrhage overview
The inflammatory response to ICH overlaps greatly with that following ischemic stroke [1]; however, there are important differences [3]. Blood components, including inflammatory cells, proteases, chemokines and cytokines,
are introduced directly into the brain at hemorrhage onset. Thrombin, in particular, appears pivotal in the initiation of inflammation following ICH; a mass lesion caused by infusion of heparinized blood or red cells without thrombin causes minimal edema, whereas infusion of thrombin rapidly causes intracerebral leukocyte infiltration and edema [5]. Additionally, iron-containing proteins released by hemolysis are potent inflammatory stimuli. These are released from approximately 48h onwards [6]. Ischemia associated with intracerebral hemorrhage is local and irreversible, with no salvageable perihematomal ‘penumbra’ [7]. Reperfusion injury, with its acute surge in free radical production, does not occur.

Animal studies: postischemic inflammatory triggers of ischemic stroke

Key initiators of poststroke inflammation have recently been elucidated. Toll-like receptors (TLRs), so-named for their homology to the Drosophila toll receptor, are able to recognise invariant pathogen-associated molecular patterns (PAMPs) and thus initiate the innate immune response to infection. However, many endogenous TLR ligands have been demonstrated. It is clear that TLRs also function as endogenous ‘danger sensors’, recognizing so-called damage-associated molecular patterns (DAMPs) released in the early phases of tissue injury [8]. Several of these are released early in cerebral ischemia (e.g. heat-shock proteins, heparan sulfate) [9].

Toll-like receptors activate the nuclear factor kappa-B (NFκB) and mitogen-activated protein kinase (MAPK) pathways in various brain cell types, leading to the synthesis and secretion of proinflammatory cytokines such as interleukin (IL)-1, IL-6 and tumour necrosis factor-α (TNF-α), chemokines and the expression of leucocyte adhesion molecules. TLRs can also upregulate anti-inflammatory factors [such as interferon-β via interferon-regulatory factor (IRF) pathway up-regulation] [8]. Both TLR-4 and TLR-2 knockout are beneficial in experimental ischemic stroke [9,10]. The identity of these key TLR ligands is not yet known.

High mobility group box-1 protein (HMGB-1), a ubiquitous and abundant DNA-binding protein, is a ligand for TLR-2 and 4. It is also binds the receptor for advanced glycosylation end-product (RAGE), which, like the TLRs, potently up-regulate NFκB signaling. HMGB-1 is released from necrotic and penumbral cells within the first hour after cerebral ischemia and up-regulates TNF-α and adhesion molecules in vitro [11]. HMGB-1 inhibition or gene knockout is strikingly neuroprotective [12]. Inhibition of HMGB-1 in RAGE-/- mice gives no additional benefit, suggesting that HMGB-1 primarily acts through RAGE in the setting of ischemic stroke.

CD36 may also serve as a ‘danger sensor’, responding to early post-ischemic stroke formation of oxidized low-density lipoprotein (LDL) and diacylglyceride [13]. CD36 is a receptor for advanced glycosylation end-products and oxidized LDL involved in the development of atherosclerosis-related inflammation. CD36 may form signaling complexes with TLRs [14] and has recently been demonstrated to play a deleterious role in ischemic stroke [13]. CD36 null mice have dramatically decreased lesion size and leucocyte infiltration post-ischemic stroke [15]. Neutrophil infiltration induced by IL-1 in these mice is, however, unchanged, suggesting that CD36 acts upstream of IL-1. The interplay between RAGE, TLRs and CD36 in ischemic stroke has yet to be elucidated.

The liver X receptor (LXR), which recognizes products of cholesterol oxidation and antagonizes NFκB signaling, may be an early counterbalance to the proinflammatory receptors listed; two groups have recently reported beneficial effects of LXR agonists [16,17]. Heat-shock protein-70, which has been recognized for some time to be neuroprotective in the setting of focal ischemia [18], may also exert its protective effects by early inhibition of the NFκB pathway [19].

Although both RAGE and TLRs cause up-regulation of cytokine secretion, pro-IL-1β, one of the main products and a major proinflammatory cytokine, is inactive unless cleaved. The process responsible has only recently been unravelled. IL-1β is cleaved by the so-called ‘inflammasome’, a protein assembly incorporating caspase-1, analogous to the ‘apoptosome’ which cleaves caspases-8 and 9 [20]. Whereas the TLRs sense predominantly extracellular DAMPs, upstream components of the inflammasome sense intracellular danger signals (such as uric acid and low potassium). Targeting the inflammasome may prove a fruitful avenue of stroke research [21**].

Glutamate, an excitatory neurotransmitter released early following ischemic and hemorrhagic stroke, may also play a role in the early initiation of inflammation. In-vitro studies of a recently developed model of the ischemic penumbra suggest that glutamate from neurons exposed to oxygen/glucose deprivation up-regulates microglial NFκB via their group II metabotropic glutamate receptors [22], causing microglia to release neurotoxic levels of TNF-α.

Prestroke inflammation: potentiation versus protection

In human stroke, there is an association between prestroke infection and worse outcome (reviewed recently by McColl and colleagues [23]). Several studies have recently examined potential mechanisms. Infarct volumes and neurological deficits following focal ischemia were greatly increased by acute prestroke administration of either
lipopolysaccharide (LPS) or IL-1 [24*]. Depletion of neutrophils prior to prestroke LPS administration almost completely attenuated this enhanced injury. Further research performed by the same group demonstrated that prestroke LPS challenge transformed the bi-phasic blood–brain barrier opening usually seen following ischemia into a sustained disruption, and that this was due to enhanced activity of neutrophil-derived matrix metalloproteinase-9 (MMP-9) [25]. High levels of C-reactive protein (CRP), which is an acute-phase protein released by the liver in response to IL-6, are linked to worse outcome following stroke [26], and acute prestroke administration of human CRP is deleterious in experimental models [27], perhaps by enhancing complement-mediated neutrophil chemotaxis and degranulation.

Not all prestroke inflammation is deleterious, however. It has long been recognized that administration of LPS (a TLR-4 ligand) more than 24 h prestroke is neuroprotective via a TNF-α-dependent process [28]. Direct stimulation of TLR-2 [29] and 9 [30] more than 24 h prestroke is likewise beneficial. Whereas acute prestroke systemic inflammatory challenges potentiate cerebral inflammation, inflammatory stimuli administered at least 24 h prior to stroke precondition the brain’s response to ischemia. This response is analogous to (and overlaps with) ischemic or hyperthermic preconditioning, in which sublethal prestroke stimuli up-regulate a coordinated network of protective genes [31]. Chronic prestroke inflammation can also be protective: chronic preischemic stroke infection of mice with Toxoplasma gondii reduced the subsequent proinflammatory cytokine response, improving outcome and lessening infarct size [32]. Similar results were also shown more recently following induced periodontitis in rats [33].

Other chronic inflammatory states can be deleterious, however. Atherosclerosis, a chronic inflammatory state, is linked to worse outcome in experimental stroke, mediated in part by stimulation of the CD36 receptor [34] (see above). Subacute psychological stress worsens stroke outcome in rodents, at least partially through a TLR-4-dependent inflammatory mechanism [35]. Stroke outcome in rodents, at least partially through a TLR-4-dependent inflammatory mechanism [35]. Subacute psychological stress worsens stroke outcome in rodents, at least partially through a TLR-4-dependent inflammatory mechanism [35]. Subacute psychological stress worsens stroke outcome in rodents, at least partially through a TLR-4-dependent inflammatory mechanism [35].

The interaction between systemic and cerebral inflammation
Evidence is accumulating that peripheral immune activation influences stroke outcome. It has previously been demonstrated that peripheral splenocytes are activated postischemia [40]. Ajmo and colleagues [41*] investigated the effects in rats of prestroke splenectomy, demonstrating a dramatic improvement in outcome, with a marked reduction both in infarct size and inflammatory infiltrate. Rats were splenectomized 2 weeks prestroke; it is thus unlikely that the beneficial effects of splenectomy were mediated by inflammatory preconditioning. Pre-ICH splenectomy has a similarly beneficial anti-inflammatory effect [42**] (see below).

In a recent study demonstrating deleterious effects of RANTES (CCL5; regulated on activation, normal T-cell expressed and secreted), a chemoattractant factor, bone-marrow chimeras negative for RANTES demonstrated equivalent neuroprotection to RANTES+/− mice, providing further evidence for the importance of systemic immune activation in intracerebral poststroke inflammation [43].

Animal studies: intracerebral hemorrhage
Although ICH accounts for around 15–20% of stroke and causes disproportionate death and disability, it receives, relative to ischemic stroke, less research attention than its contribution to disease burden warrants [44]. The last 12 months has been no exception.

Plasminogen is the precursor of plasmin, an endogenous fibrinolytic protease produced following activation of the coagulation cascade. Plasminogen can be produced intracerebrally, as well as enter the brain at the time of hemorrhage. As thrombin inhibition has been previously demonstrated as the crucial step in initiating post-ICH edema, a significant role of plasma-derived plasmin has been largely discounted. A recent study, however, suggests that plasmin may augment thrombin-mediated injury [45*]. As plasmin inhibition would be expected, if anything, to decrease bleeding, this approach may prove more beneficial than thrombin inhibition, which may do the opposite.

Stem cell therapy is a promising treatment for both ischemic stroke and ICH. It has been previously assumed that replacement of dead or damaged cells is the major
benefit of treatment. However, it has become increasingly clear that stem cells have multiple mechanisms of action, including the inhibition of inflammation [46]. Lee and colleagues [42**] recently studied the effects of intravenous and intracerebral neuronal stem cell (NSC) injections postcollagenase ICH. Intriguingly, only intravenous injections were beneficial, with marked reductions in inflammatory infiltration, edema and neurological deficits. These beneficial effects were evident within the first few days post-ICH, at which time-point very few intracerebral NSCs were demonstrated. Most were residing in the spleen. Pre-ICH splenectomy without NCS injection also led to decreased inflammation and edema. NSC injection provided no additional benefit in this latter group. The authors concluded that the neuroprotective effect of NSC injection in their experiment was mediated by amelioration of a deleterious spleen-induced inflammatory response. Similar findings were recently reported following hematopoietic stem cell transplantation in ischemic stroke [47]; beneficial effects were associated with a blunting of the splenic, but not CNS, poststroke up-regulation of proinflammatory gene transcription.

Many, but not all, anti-inflammatory therapies proven beneficial in experimental ischemic stroke are beneficial in ICH. Mirroring work in ischemic stroke, complement inhibition [48], antioxidant treatment [49] and inhibition of neutrophil infiltration [50] have all recently proven beneficial.

Recent and ongoing human studies of poststroke inflammation

Table 1 summarizes clinical and experimental approaches to the treatment of poststroke inflammation, including, when available, ‘levels of evidence’ from internationally published guidelines [51,52] (a recent meta-analysis of hemispherectomy for post-ischemic stroke edema [53] postdates these guidelines).

There are no proven directly anti-inflammatory treatments for human stroke, although several recent studies have helped confirm concepts derived from experimental stroke.

Recent microarray analysis of human perihematomal brain tissue confirms that both proinflammatory and anti-inflammatory gene networks are highly up-regulated in human ICH [54], strongly overlapping with previous work in experimental ICH [55]. NFκB pathway-associated genes are particularly prominent.

The body of evidence in both human and animal models for neutrophil-mediated secondary damage continues to accumulate, despite the failure to prove the beneficial effects of neutrophil inhibition in human stroke [56]. Matrix metalloproteinase (MMP) inhibition is an attractive therapeutic target poststroke, although both the identity and origin of deleterious MMP has been a matter of debate. Recent evidence obtained by the analysis of

<table>
<thead>
<tr>
<th>Inflammatory pathway</th>
<th>Recommended therapy</th>
<th>Investigational therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflammatory triggers</td>
<td>Thrombolysis (1A)</td>
<td>CD36 antagonist; thrombin antagonist; RAGE antagonist; TLR antagonist</td>
</tr>
<tr>
<td>Intracellular pathways</td>
<td></td>
<td>NFκB pathway antagonist; MAPK pathway antagonist; AP-1 pathway antagonist; LXR agonist; HSP-70; interferon β1a; hypothermia; erythropoietin; ACE antagonist; angiotensin II antagonists</td>
</tr>
<tr>
<td>Inflammatory mediators</td>
<td></td>
<td>Cytokine antagonist (e.g. IL-1β); anti-inflammatory cytokine (e.g. IL-10, TGF-β); chemokine inhibition (e.g. IL-8); omega-3 PUFAs (albumin therapy); mast cell inhibition; substance P inhibition; bradykinin inhibition; lipoygenase inhibition; microglial modulation (minocycline)</td>
</tr>
<tr>
<td>Leucocyte trafficking</td>
<td>Prevent and treat infectious complications (1B²); avoid indwelling catheters (SD²)</td>
<td>Adhesion molecule inhibition (e.g. ICAM-1, CD11b, ?statins²)</td>
</tr>
<tr>
<td>Systemic inflammatory response</td>
<td></td>
<td>Splenectomy; stem cell therapy; CRP antagonist; complement antagonist</td>
</tr>
<tr>
<td>Effector molecules</td>
<td></td>
<td>MMP antagonist; COX-2 antagonist; iNOS antagonist; free radical scavengers; NOX antioxidant</td>
</tr>
<tr>
<td>Limitation of consequences</td>
<td>Hemicraniectomy for massive edema (83); anti-pyretics for fever (IC²)</td>
<td></td>
</tr>
</tbody>
</table>

? perhaps (it is disputed by some in the literature); ACE, angiotensin-coverting enzyme; AP-1, activator protein-1; COX-2, cyclo-oxygenase-2; CRP, C-reactive protein; HSP-70, heat-shock protein-70; IL, interleukin; iNOS, inducible nitric oxide synthase; LXR, liver X receptor; MAPK, mitogen-activated protein kinase; MMP, matrix metalloproteinase; NFκB, nuclear factor kappa B; NOX, NADPH oxidase; PUFAs, polyunsaturated fatty acids; RAGE, receptor for advanced glycosylation end-products; TGF-β, transforming growth factor-β; TLR, toll-like receptor. Therapies in bold type have been, or are currently being trialed in humans.

* These agents have pleiotropic actions, influencing more than one mechanism of inflammation, other cell death mechanisms, or both.

1 Levels of evidence drawn from recently internationally published guidelines [51,52] [references for therapies listed in text, or can be obtained from referenced reviews (space limitations preclude full referencing)].
Knowing the actual incidence of stroke, but also decreased stroke severity, the treatment group [68]. In addition, therapeutic anticoagulation with warfarin is not only linked to decreased clot burden and/or enhanced thrombolysis, it is possible that anti-inflammatory effects of lowered thrombin concentrations may contribute. This contention is supported by a recent comparison of warfarin-associated and spontaneous ICH; the latter group had significantly more early perihematomal edema [70*], confirming in humans the functional significance of the coagulation cascade in edema formation [5].

Lower body temperature, which has anti-inflammatory, antiexcitotoxic and antiapoptotic activity, is linked to better outcome poststroke. Induced hypothermia appeared to reduce poststroke edema in a recent trial [71]. Minocycline has pleiotropic beneficial actions (anti-inflammatory, antiapoptotic and protease inhibitor) [72]. Recently, a trial of poststroke minocycline therapy was reported [73], and suggested a substantial treatment benefit. Although this was an open-label study, results (as well as extensive animal data) were sufficiently encouraging to warrant testing in a large randomized, blinded study.

In this vein, there are ongoing phase one or two trials of hypothermia (COAST-II, CHILI, ICTuS-L) and minocycline (MINO) [74]. Phase three trials of albumin therapy (ALIAs), erythropoietin and angiotensin receptor antagonism (SCAST) are ongoing [74]; all three are pleiotropic agents with anti-inflammatory properties [75–77]. Combining multiple pleiotropic therapies (such as statins combined with hypothermia [78]) may be a worthwhile future approach.

Few anti-inflammatory therapies are currently in clinical trials for patients with ICH. As mentioned previously, statins have anti-inflammatory activities; recent retrospective analyses link pre-ICH statin therapy to decreased perihematomal edema [79]. However, it is unclear whether functional outcome is improved [80, 81]. A phase two trial looking at the effect of simvasatin on perihematomal edema is currently underway [74].

Conclusion

There is a growing body of evidence that inflammation after both ischemic stroke and ICH is predominantly deleterious. However, as for potentially neuroprotective therapies, inhibition of inflammation following stroke in humans has not, as yet, proven successful. Nonetheless, a greater understanding of the mechanisms underlying inflammation will improve chances of identifying promising therapeutic approaches, with experimental stroke models continuing to further our understanding of these underlying inflammatory mechanisms. Adherence to broadly disseminated guidelines for stroke animal research [82] will help in the selection of the most promising agents. Successful translation of therapies into the clinical context will be made more likely by targeting treatments to patients likely to have the most severe inflammatory response, as well as using therapies with pleiotropic beneficial actions.

Acknowledgements

T.J.K. is supported by the National Health and Medical Research Council and the National Heart Foundation. R.V. is supported, in part, by the Neurosurgical Research Foundation.
References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:
• of special interest
•• of outstanding interest

Additional references related to this topic can also be found in the Current World Literature section in this issue (p. 327).

36 Describes the interrelationship between stress and outcome following stroke, implicating innate immunity as a critical factor.

43 Describes that the peripheral immune response contributes to inflammation-induced neurodegeneration after stroke.

45 Demonstrates that the neuroprotective effect of neural stem cell injection was mediated by amelioration of a deleterious spleen-induced (systemic) inflammatory response.

49 Demonstrates that the plasminogen accelerates thrombin-induced hemorrhagic stroke to increase neurodegeneration.

*Confirms the functional significance of the coagulation cascade in early edema in humans.

