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Neurotoxicity is a common side effect of chemotherapy treatment, with unclear molecular mechanisms. Clinical studies sug-

gest that the most frequent neurotoxic adverse events affect memory and learning, attention, concentration, processing

speeds and executive function. Emerging preclinical research points toward direct cellular toxicity and induction of neuroin-

flammation as key drivers of neurotoxicity and subsequent cognitive impairment. Emerging data now show detectable levels

of some chemotherapeutic agents within the CNS, indicating potential disruption of blood brain barrier integrity or transport

mechanisms. Blood brain barrier disruption is a key aspect of many neurocognitive disorders, particularly those characterized

by a proinflammatory state. Importantly, many proinflammatory mediators able to modulate the blood brain barrier are gener-

ated by tissues and organs that are targets for chemotherapy-associated toxicities. This review therefore aims to explore the

hypothesis that peripherally derived inflammatory cytokines disrupt blood brain barrier permeability, thereby increasing direct

access of chemotherapeutic agents into the CNS to facilitate neuroinflammation and central neurotoxicity.

Neurotoxicity and its associated cognitive manifestations are
poorly characterized, dose-limiting side effects of chemother-
apy treatment.1 Clinically, the impact of chemotherapy on
cognition has been most extensively studied in breast cancer
patients,2–4 however it is becoming increasingly recognized
that cognitive symptoms affect a large portion of patients
with varying malignancies and treatments.5–8 Despite its
prevalence, cognitive dysfunction, often referred to as chemo-
brain, remains an under-reported and ill-defined

complication of anti-cancer treatment. Cognitive symptoms
are vast, but are most commonly reported to affect memory
and learning, attention, concentration, processing speeds and
executive function.2,4,9,10 Importantly, unlike many acute
chemotherapy-related toxicities, cognitive dysfunction
presents both acutely and chronically, compromising quality
of life for patients unable to return to prior levels of social
and academic interaction.11

Given its frequency, and its acute and chronic impact, the
importance of better understanding chemotherapy-induced
neurotoxicity has become a priority with an obvious goal of
developing effective interventions. Like the overwhelming
majority of regimen-related toxicities, changes in neurological
function occur in a subset of cancer patients and curiously
these changes may or may not be associated with structural
and functional alterations in the brain.12 Compounding our
ability to attribute cognitive changes directly to treatment has
been the finding that impairment has been reported among
cancer patients who are treatment na€ıve.13

As yet, the molecular mechanism(s) involved in
chemotherapy-induced neurotoxicity have not been clearly
defined, however there is strong evidence implicating direct
cytotoxicity and associated inflammatory mechanisms. Cur-
rently, the bulk of studies assessing the latter focus on neuro-
inflammatory pathways, however, it is important to consider
the impact of cytokines derived from the tumor, as well as
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those elicited by the effect of chemotherapy on normal or
tumour tissue. Most likely, direct cytotoxicity and neuroin-
flammation occur in concert with cytokine-mediated disrup-
tion of the blood brain barrier (BBB) serving to enhance
drug penetration to augment local levels and result in ampli-
fication of cognitive symptoms.

The finding of detectable levels of systemically adminis-
tered chemotherapeutic agents within the central nervous sys-
tem (CNS)14 supports this presumption and implies a level of
BBB permeability that has not been previously appreciated.
Increased levels of BBB permeability suggest that some che-
motherapeutic agents are capable of disrupting its integrity,
either directly or indirectly. Convincing evidence also exists
linking BBB dysfunction with a proinflammatory state, with
BBB dysfunction reported in patients with chronic inflamma-
tory diseases as well as being a consequence of many forms
of regimen-related peripheral toxicities. Among these,
chemotherapy-induced mucosal injury, especially of the gas-
trointestinal tract, provides a compelling example of how
focal chemotherapy-induced tissue damage can serve as a
conduit for central neurotoxicity. Of interest, chemotherapy-
induced gut toxicity (CIGT) has recently been shown to
increase central markers of pain and neuroinflammation
highlighting the ability of peripherally derived inflammation
to profoundly affect CNS function.

Structural and Neuroimaging Studies That Define
the Scope of Chemotherapy-associated Changes
in the Brain
The neural basis for neurological deficiencies in cancer
patients has been investigated with both structural and func-
tional neuroimaging. Voxel-based morphometry (VBM) and
diffusion-tensor imaging (DTI) are structural imaging techni-
ques able to detect changes in both white and gray matter,
whilst, functional magnetic resonance imaging (fMRI) and
positron emission tomography (PET) studies enable assess-
ment of functional deficiencies when structural changes are
not evident. While these technologies have not been applied
broadly, limited data suggest that chemotherapy is consistent-
ly associated with, changes in white matter (WM) structures.
WM hyperintensities and hippocampal lesions have been
identified using basic neuroimaging techniques in breast can-
cer patients treated with various chemotherapy regimens.15–17

T1-VBM studies, an automated and quantitative method
of neuroimaging which theoretically provides an unbiased,
comprehensive and highly reliable assessment sensitive to
local changes18,19 have demonstrated diffuse cortical and sub-
cortical WM and bilateral neocortical gray matter (GM) vol-
ume reductions or deficiencies in the superior frontal gyrus,
parahippocampal gyrus, cingulate gyrus and the precuneus
gyrus.20–22 Based on the spectrum of neurocognitive symp-
toms seen in cancer patients and the well-documented func-
tion of the hippocampus, a growing body of research now
shows impaired neurogenesis and hippocampal function like-
ly contribute to neurotoxicity.23,24 In support of this,

hippocampal alterations have been identified in response to a
spectrum of chemotherapeutic agents5,24–26 in a number of
patient cohorts.

Structural changes, indicative of direct neurotoxicity, are
often seen in conjunction with neurocognitive functional
deficiencies detected through DTI and digital symbol testing
(DST); a measure of processing speed. Although studies are
limited in size and number, results have indicated associa-
tions between the integrity of the corpus collosum and proc-
essing speeds of patients receiving adjuvant chemotherapy for
breast cancer.27 Further associations have been identified
between processing speeds and frontal WM integrity.28 The
largest study to investigate this association was conducted by
Deprez et al.29 in premenopausal women with breast cancer.
Patients receiving adjuvant chemotherapy exhibited worsen-
ing attention, psychomotor speed, verbal learning and memo-
ry, as well as decreased microstructural integrity in
widespread regions of the corona radiata and the corpus col-
losum, compared to matched controls, reinforcing that WM
changes may be the source of cognitive deficits seen in
chemotherapy-treated patients.29

Results of neuroimaging studies have been informative rela-
tive to describing observed structural and functional deficiency
relationships associated with cancer- and chemotherapy-
associated cognitive dysfunction. However, they are unable to
mechanistically define the pathogenesis of chemotherapy-
associated neurological toxicities. And at this early stage, their
interpretation is limited by heterogeneity in experimental meth-
odology, and confounded by neurological comorbidities com-
monly seen in cancer patients such as depression and anxiety,
which can produce similar structural manifestations.1 Further-
more, the inclusion of predominantly elderly patients, a lack
pretreatment baseline controls and presence of structural
deficits in treatment-na€ıve patients clouds the ability to make
definitive conclusions regarding the mechanisms of
chemotherapy-induced neurotoxcity.

Blood Brain Barrier Dysfunction: An Accelerant for
Neurotoxicity?
The presence of chemotherapeutic agents in the CNS after
systemic administration indicates their ability to cross the
BBB, either physiologically or pathologically.30 Early research
has demonstrated detectable levels of intravenously adminis-
tered cisplatin, bis-chloroethylnitrosourea (BCNU) and pacli-
taxel in the brains of rodents using PET.30,31 This
phenomenon has also been seen in higher order primates,
with detectable levels of 5-fluorouracil in the cerebrospinal
fluid after intravenous administration.14 Although therapeutic
drug levels effective for CNS malignancies were not seen,
drug concentrations were sufficient to induce apoptosis and
neuronal damage associated with neurological dysfunction.32

In addition to these findings, it is well established that a
number of proinflammatory cytokines have detrimental
effects on tight junctions and thus the integrity of the BBB.
This is critically important when considering BBB breakdown
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in cancer patients, as there are a number of sources of proin-
flammatory cytokines, derived from the tumour and the
effects of chemotherapy on normal tissue.

Mediators of inflammation disrupt blood brain

barrier integrity

The BBB (Fig. 1) is highly plastic and can undergo significant
modification in response to a raft of physiological and
pathologies cues. Subsequently, impairment of the BBB has
been implicated in a number of CNS pathologies, particularly
those characterized by a proinflammatory state.33,34 For
example, traumatic brain injury (TBI) is often accompanied

by a large inflammatory response resulting in grossly abnor-
mal BBB permeability, the influx of inflammatory cells and
subsequent oedema.35,36 A similar mechanism is now also
hypothesized to play a role in the pathogenesis of stroke in
which a weakening of the BBB, associated with a transient
breakdown of tight junction proteins, is thought to contribute
to the haemorrhagic transformation manifested by a height-
ened inflammatory state and worsened prognosis.37

In light of these clinical associations between inflamma-
tion and BBB breakdown, there is now a wealth of in vitro
and in vivo data demonstrating the ability of proinflamma-
tory cytokines to disrupt the BBB (Table 1). From these

Figure 1. Blood brain barrier transport mechanisms. Cerebral endothelial cells of the blood brain barrier (Panel A) have specialised circum-

ferential tight junctions and intracellular caveolae, which regulate blood brain barrier transit (Panel B). Tight junctions are highly plastic,

multi-protein structures traversing the intercellular junction (Panel C). Each tight junction comprises the cytoplasmic protein family zonular

occludens (21, 2.2, 23) and the transmembraneous protein families claudin, JAMs and occludin. Caveolae, comprised of Cav-1, Cav-2

and Cav-3, control transcellular permeability within the blood brain barrier (Panel D). [Color figure can be viewed at wileyonlinelibrary.com]
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observations, it is clear that some cytokines exclusively affect
paracellular barriers (e.g., IL-1b), through breakdown and
translocation of tight junction proteins, whilst others target
transcellular processes mediated by caveolae (e.g., TNFa). A
number of vasogenic agents (histamine, substance P) and
proteases associated with inflammation, have also been iden-
tified to promote BBB remodeling. Of interest is the impact
of matrix metalloproteinases (MMP) on tight junction integ-
rity (Table 1) given the high levels of circulating MMPs
observed after chemotherapy.38

It is well documented that increased MMP activity corre-
lates with elevated permeability of both endothelial and epithe-
lial barriers (Table 1), strongly implying MMP-mediated tight
junction disruption.39–42 Particularly robust evidence supports
a role for MMP-mediated tight junction disruption in the BBB
as endothelial cells, astrocytes and pericytes are all potent sour-
ces of these signaling proteins.39 Brain-derived microvascular
endothelial cells (BMECs) exposed to oxidative stress expressed
significantly elevated MMP-9 activity paralleled by downregu-
lation and redistribution of occludin.43 Numerous preclinical
studies also support a role for MMP-mediated tight junction
disruption.40,41,44 For example, MMP-2/-9 levels have been
shown to be significantly elevated following cerebral ischemia
leading to tight junction protein degradation, increased BBB
permeability and oedema.40,45 Furthermore, inhibition of
MMP-2/-9 has been shown to reduce vascular permeability
and attenuate tight junction disruption.40 This is further sup-
ported by evidence showing that MMP-9 knockout mice have
greater ZO-1 expression coupled with decreased BBB perme-
ability and reduced oedema following stroke.46 The impact of
MMPs on caveolae-mediated transcytosis is now also being
recognized for its potential role in CNS pathologies character-
ized by BBB disruption (Table 1).

Chemotherapy-induced Cytokine Production, Blood
Brain Barrier Dysfunction and Clinical Implications
for Patients
Virtually every biological substance known to have the capacity
to alter the integrity of the BBB has been shown to be generated
by tissues and organs that are targets for chemotherapy-
associated toxicities. Among these, chemotherapy-induced
mucosal injury, especially of the gastrointestinal tract, provides
a compelling example of how focally induced chemotherapy
tissue damage can serve as a conduit for central neurotoxicity.
While suggested by Seigers and Fardell,78 the potential impact
peripheral inflammatory mediators as a driver of central toxici-
ty has hardly been explored.

Chemotherapy-induced gut toxicity: A potential facilitator

of CNS pathology

We have previously highlighted strong epidemiological data
linking the development of neurotoxicity and gut toxicity fol-
lowing chemotherapy, and suggest that these off targets toxic-
ities may in fact have common molecular roots.79,80 The
development of CIGT is a dynamic process, characterized byTa
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overlapping and simultaneous biological events. Logan et al.51

demonstrated that the administration of irinotecan, 5-
fluoruoracil and methotrexate induced significant elevations
in TNFa, IL-1b and IL-6 in tumour-bearing rats. Important-
ly, these proinflammatory cytokines not only damage sur-
rounding tissue through pro-apoptotic signals (e.g., caspases
3 activation), but they are also highly efficient activators of
NFjB thus amplifying the mucotoxic cascade. Furthermore,
TNFa and IL-1b induce MMP-1, MMP-2 and MMP-3 acti-
vation, which is thought to contribute to development of gut
toxicity through inflammatory pathways, altered extracellular
matrix composition, adhesion molecules and tight junction
disruption. Toll-like receptor (TLR)4-dependent mechanisms
have also been linked to the development of gut toxicity,
with increases in its expression seen following chemothera-
py81 as well as improvements in symptomatic parameters
seen following genetic manipulation of its downstream sig-
naling molecules (e.g., MyD88, MD-2).82,83 This aspect of
CIGT has significant implications for BBB maintenance, as it
is becoming increasingly clear that TLR4-dependent signaling
pathways are critical for tight junction integrity.84

TLR4-mediated barrier modulation has been shown in both
endothelial and epithelial models. For example, Gao et al.
(2015)85 recently showed that traumatic brain injury was not
only associated with traditional proinflammatory markers, but
also elevated TLR4 signaling and uncontrolled BBB transit.
Importantly, administration of a vascular endothelial growth
inhibitor (VEGI) up-regulated the tight junction proteins
(claudin-5, ZO-1, occludin) and attenuated TLR4 activation,
NF-jB signaling and the production of proinflammatory cyto-
kines, as well as improving markers of brain injury. Alcohol-
induced steatohepatitis is also well documented to present
with acute intestinal barrier disruption, resulting from
impaired tight junction protein expression.86 In this study,
administration of a TLR4 monoclonal antibody attenuated
both functional and molecular markers of barrier function,
emphasizing the importance of TLR4-mediated tight junction
disruption in an inflammatory setting.

TLR4-dependent tight junction disruption has also been
shown to occur in response to irinotecan treatment in a TLR4
knockout (2/2) mouse model of gut toxicity.80 Following iri-
notecan, increased permeability of both the intestinal barrier
and BBB were detected, both seen at 24 h post-treatment.
Although TLR4 knockout animals only showed improvements
in intestinal barrier disruption, this study is the first to demon-
strate central neurotoxic changes in a model of chemotherapy-
induced gut toxicity and reinforces the bidirectional communi-
cation that exists between the gastrointestinal system and
CNS. It is likely this communication that underpins the preva-
lent comorbidities affecting these organ systems.

Intestinal inflammation drives CNS changes

A number of intestinal pathologies are associated with an
increased risk of behavioral comorbidities as indicated by
increased rates of depression, mood disorders and cognitive

dysfunction in patients with inflammatory bowel disease
(IBD).87 For example, elevated circulating proinflammatory
cytokines, increased in intestinal permeability and the num-
ber of circulating monocytes are commonly reported in acute
phases of trinitrobenzene sulfonic acid (TNBS)-induced coli-
tis in mice.88 Importantly, these are accompanied by localized
breaches in the BBB89 leading to increased neuroinflamma-
tion90,91 and associated cognitive disturbance. These findings
are consistent with those of Zonis et al.92 who, using a differ-
ent murine IBD model (dextran sodium sulfate), found
increased microglial and astrocytic reactivity in the hippo-
campus of treated mice. These results also compliment data
indicating altered neuronal function and increased anxiety-
like behavior in models of parasitic gut inflammation.93,94

Other reports support the concept that patients with chronic
inflammatory states initiated by autoimmune diseases, cancer
or infections are at higher risk for central neurological
pathology and that there is a high likelihood that such
changes are mediated by proinflammatory cytokines directly
impacting the brain.95

Neuroinflammation and Cognitive Dysfunction
Increased systemic proinflammatory cytokine production has
been previously suggested as a candidate mechanism for cog-
nitive dysfunction in cancer patients.26 It is therefore possible
that proinflammatory cytokines may be involved in several
aspects of neurotoxicity by; (i) increasing BBB transit, and
(ii) permitting neuroinflammation and associated tissue
manifestations.

Substantial data, from a spectrum of clinical settings,
highlight links between peripheral inflammation and cogni-
tive symptoms. For example, peripheral activation of the
immune system by a subseptic dose of lipopolysaccharide
(LPS) has been shown to increase cytokine expression within
the brain96–98 at levels associated with learning and memory
disruption in both models of disease and health.99–101 In
healthy volunteers, LPS leads to increased levels of IL-1,
TNFa and IL-6 resulting in impaired working memory and
cognitive dysfunction.102 Similarly, increased peripheral
inflammation has also been associated with gradual cognitive
decline and the development of dementia in the elderly
population.103

Interestingly, the use of IFNa and IL-2 (proinflammatory
cytokines) as anti-cancer agents is highly linked to the devel-
opment of depression and other cognitive impairments,104,105

however, there is only limited clinical data from cancer
patients in which correlations between circulating cytokines
and cognitive function have been evaluated. Meyers et al.105

reported an association between elevated levels of circulating
IL-6 and worsened executive function in patients with acute
myeloid leukemia. In addition, elevated IL-6 and TNFa seen
in chemotherapy-treated breast cancer survivors correlated
with persistent hippocampal structural changes and reduced
verbal memory performance107,108 well beyond the period
during which patients received drug infusions.
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When looking at other CNS pathologies characterized by
neuroinflammation and cognitive impairment, Alzheimer’s
disease (AD) provides additional insight. Patients with AD
often have elevated levels of TNFa in the cerebrospinal fluid
and parenchyma,109 as well as expressing TNFa-related poly-
morphisms.110 The pathological level of cytokines resulting in
this chronic inflammatory state mimics that noted in cancer
patients and perpetuates neuronal loss and cognitive
decline.111 Importantly, treatment with anti-TNFa agents in
patients with AD has been shown to favorably impact the
development of cognitive dysfunction.112,113 Of particular
importance to our proposed hypothesis is that AD is often
accompanied by increased BBB transit,114 leading to height-
ened inflammatory influx and worsened clinical outcomes.

Tumour-dependent cytokine production

Further confounding our understanding of how peripheral
inflammation, BBB disruption and neuroinflammation con-
tribute to cognitive dysfunction is the fact that results from
clinical studies are neither uniform nor concrete. Cognitive
dysfunction has been reported in patients with breast cancer
or colorectal cancer after diagnosis, but before the adminis-
tration of any anti-cancer treatment.115 Similarly, in a recent
study comparing patients with localized colorectal cancer
(n5 289) who received or did not receive chemotherapy,
patients with metastatic or recurrent colorectal cancer (CRC)
(n5 73) and healthy controls, Vardy et al.13 reported signifi-
cant differences in cognitive dysfunction prior to, and follow-
ing, treatment between patients with CRC and healthy
controls. Surprisingly, there was no difference in the degree

of cognitive dysfunction between patients who received che-
motherapy and those who did not. In addition, the extent of
disease (local vs. metastatic) did not effect neurological func-
tion clouding understanding of tumour-driven effects on cog-
nition. While levels of proinflammatory cytokine levels were
elevated in the CRC cohorts vs. controls, there was no statis-
tically significant relationship between them and cognitive
dysfunction. Patel et al.’s115 study of 174 newly diagnosed
patients with breast cancer also reported baseline levels of
cognitive dysfunction and elevations in proinflammatory
cytokine levels (TNF). However, elevations in TNF were no
higher in cancer patients compared to a noncancer, demo-
graphically similar control group.

The findings of these, and similar studies, demonstrate the
complexities of both the clinical and biological elements asso-
ciated with cancer treatment-related cognitive dysfunction.
First, the intrinsic and extrinsic biological activities associated
with tumours have likely been underestimated. Tumours may
actively produce inflammatory mediators as a consequence of
local oxidative stress or stimulate inflammation in response
to their presence.116 These findings might account for base-
line cognitive dysfunction. Nonetheless, the lack of significant
differences in cytokine levels between recently diagnosed can-
cer patients and noncancer controls clouds definitive
conclusions.

The Significance of Symptom Chronicity
Despite patient and study heterogeneity and methodological
limitations, neurotoxicity is defined by the chronicity of
symptoms which often persist long after treatment

Figure 2. Schematic highlighting multifactorial pathobiology of cognitive dysfunction. Many cognitive disorders are characterised by blood

brain barrier disruption and neuroinflammation. The impact of peripheral inflammation on central neurovascular integrity and the subse-

quent development of neuroinflammation is now considered a key driver in many neurological disease characterised by systemic inflamma-

tion. Blood brain barrier disruption may therefore compliment what is currently understood about neurotoxicity, by enhancing exposure of

the CNS to chemotherapeutic agents (direct neurotoxicity) and permitting neuroinflammation (indirect). [Color figure can be viewed at

wileyonlinelibrary.com]
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cessation.29 It has been reported that patients treated with
high dose chemotherapy and those that receive autologous
haemopoietic stem cell transplantation have significant
impairments in cognitive function up to 1 year after cessation
of their treatment.117 The longevity of cognitive symptoms
has also been assessed in survivors of childhood acute lym-
phoblastic leukaemia 6–18 years after remission.118 Deficits
in figural memory as well as reduced hippocampal volume
were also noted. Similarly, in breast cancer patients, chemo-
therapy treatment resulted in reduced gray matter volume in
the right parahippocampal gyrus compared to untreated can-
cer patients, which correlated with reduced memory perfor-
mance at 1 but not 3 years post-treatment.21 These studies
are somewhat complimented by two prospective studies that
show hippocampal volume reductions at 1 month following
chemotherapy treatment, which was lost at further time
points (1 year).119 More persistent changes were observed in
a recent investigation of 19 breast cancer patients,120 who
showed right hippocampal gray matter volume reductions at
both 1 month and 1 year after treatment completion.

Although variations exist in the time-course of these
symptoms, chronicity is almost always reported and is a
defining characteristic of neurotoxicity. Given the relatively
short half-life of many chemotherapeutic agents, the chronic-
ity of symptoms is biologically significant, and suggests that
the impact of direct cytotoxicity would presumably be mini-
mal; with chronic, reactive inflammatory processes, a more
likely candidate. However, it is important to consider that
neurotoxicity is unlikely to be attributable to a single mecha-
nism, rather, various mechanisms may converge additively or
synergistically to result in the heterogeneous symptoms seen
in patients (Fig. 2). This is well described by Dietrich et al.5

who highlights key mechanistic drivers such as oxidative
stress, direct cellular toxicity and inflammation that contrib-
ute to altered cellular kinetics in the hippocampus as well as
neurovascular/BBB disruption. If a prolonged period of
inflammation is present, either systemically or centrally,
altered BBB transit could parallel the chronic, long-term

changes seen in patients and may provide a better biological
understanding.

Conclusion
Regimen-related toxicities are poorly characterized and often
have significant effects on patient quality of life. We have
previously highlighted the importance of symptom clusters,
emphasizing the possibility of common underlying mecha-
nisms, which could perhaps be simultaneously targeted.121

Cognitive impairment is particularly devastating to patients,
and currently has no universally accepted mechanism. This
review has proposed that, contrary to traditional beliefs, che-
motherapeutic agents can in fact gain access to the CNS.
Importantly, we suggest that this is likely due to upregulated
and uncontrolled BBB transit. The BBB, like many interfaces
within the body, is subject to intense modification highlight-
ing the plasticity of tight junctions and transcytotic media-
tors. Based on symptom clustering and potential linkages
between the gut and CNS, we suggest that peripherally
derived inflammatory mediators are responsible for inducing
BBB dysfunction, thus permitting central neurotoxicity.
Importantly, neurotoxic changes may occur through the
direct actions of the chemotherapeutic drug itself, or present
as the behavioral manifestation of neuroinflammation. BBB
disruption may therefore be the missing link in our under-
standing of how gut/CNS communication is involved in the
development of two critically important regimen-related tox-
icities. Furthermore, it presents as an exciting opportunity to
target peripheral inflammation and achieve wider reaching
clinical outcomes.
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