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Abstract
Histopathological whole slide images of haematoxylin and eosin (H&E)-stained biopsies contain valuable information with
relation to cancer disease and its clinical outcomes. Still, there are no highly accurate automated methods to correlate
histolopathological images with brain cancer patients’ survival, which can help in scheduling patients therapeutic treatment
and allocate time for preclinical studies to guide personalized treatments. We now propose a new classifier, namely,
DeepSurvNet powered by deep convolutional neural networks, to accurately classify in 4 classes brain cancer patients’ survival
rate based on histopathological images (class I, 0–6 months; class II, 6–12 months; class III, 12–24 months; and class IV,
>24 months survival after diagnosis). After training and testing of DeepSurvNet model on a public brain cancer dataset, The
Cancer Genome Atlas, we have generalized it using independent testing on unseen samples. Using DeepSurvNet, we obtained
precisions of 0.99 and 0.8 in the testing phases on the mentioned datasets, respectively, which shows DeepSurvNet is a reliable
classifier for brain cancer patients’ survival rate classification based on histopathological images. Finally, analysis of the fre-
quency ofmutations revealed differences in terms of frequency and type of genes associated to each class, supporting the idea of a
different genetic fingerprint associated to patient survival. We conclude that DeepSurvNet constitutes a new artificial intelligence
tool to assess the survival rate in brain cancer.
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1 Introduction

Brain cancer patient classification is mainly based on histo-
pathological images that can accurately identify the type of
cancer as well as genetic tests [1, 2]. However, recent single
cell RNA seq experiments performed in GBM biopsies [3–8]
have challenged these models, pointing out that the reliability
of these methods and its use in personalized medicine strongly
depends on how much we know on these different type of
cancers (i.e. cancer cell subtypes within a tumour) and how
many therapies for their individual treatment we have avail-
able and whether these target all or none of such cancer cell
populations [9]. Thus and as we certainly are still progressing
on the molecular determinants that contribute to the aggres-
siveness of glioblastoma, the current brain cancer classifica-
tion methods (either based on histological and/or genetic ap-
proaches) so far have shown not being sufficient to provided a
complete picture on how this can be used to predict (i) surviv-
al, (ii) response to treatment and (iii) the development of more
personalized treatments [10], which is clearly evident by the
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following: (i) the lack of development of new treatments for
brain cancer patients, in particular, those patients affected by
grade IV glioma [10]; (ii) the lack of improvement in brain
cancer treatments and patients outcomes (i.e. survival) in the
last 30 years [11]; and (iii) the lack of personalized treatments
in the clinic, where most oncologists subject patients to the
Stupp protocol and knowledge-based on IDH gene mutations
and MGMT methylation [12].

Thus, we feel that in addition to the classification of
brain tumours that have been done so far, it is also equally
important to stratify brain cancer patients based on their
survival characteristics and which will permit us to clini-
cians to tailor both the timing and the type of treatments to
patients [12, 13]. This will, for example, be helpful or
avoid overtreating those patients with more stable disease.
Moreover, classification of brain tumours as a function of
brain cancer survival will help us to reveal key character-
istics that make these tumours very aggressive and for
those patients that present long survival, what are the mo-
lecular signatures that contribute to it [13].

Thus, survival rate analysis has become essential for clini-
cians to select the best treatment methods based on the pa-
tient’s clinical data [14, 15]; and survival predictor models
have been developed in oncology to investigate the relation-
ship between information obtained at the time of diagnosis
and the overall patient’s survival [16]. This has been further
facilitated by the recent access to large datasets of digital im-
ages, e.g. The Cancer Genome Atlas (TCGA), at the moment
of diagnosis, including those from computed tomography
(CT), magnetic resonance imaging (MRI) and whole slide
pathological imaging (WSI), which have allowed researchers
to investigate patient’s survival based on the information
contained in these images [17–20]. For example, Tomczak
et al. [21] collected > 2000 lung cancer WSIs, and others
established a relationship between the information stored in
the pathological images and survival rates [22, 23].

Thus, a different group of models for prediction of the
patient’s survival based on the histopathological information
collected at the moment of diagnosis have emerged. One
group correspond to accurate prediction of the patient’s sur-
vival that is related to the traditional hazard models and which
are based on the Cox model [24] and its derivations [25, 26].
These consider a linear combination of covariates to predict
the risk of the patient’s death with nonlinear functions related
to the risk [27]. Another group is based on artificial intelli-
gence and deep learning, on which deep convolutional neural
networks (DCNN) are used for the analysis of biomedical
imaging and applied to recognition, classification and predic-
tion tasks [28–31]. Numerous examples that use DCNNs have
been reported recently to predict the survival rate based on
pathological images including Katzman et al. [32] who put
forwards for the first time deep fully connected network,
namely, DeepSurv, to predict survival rate based on structured

clinical data (non-images data) and Zhu et al. [27] who used a
modified DCNN, namely, DeepConvSurv, on the unstruc-
tured data (867 lung cancer WSIs pathological images) to
predict the survival rate. In particular, they changed the
DCNN loss function in their model to negative partial log
likelihood, and as a result, the output of their network mea-
sured the risk value for each patient. In their work, they re-
ported a concordance index (c-index) of 0.63 as their model
evaluator. Zhu et al. [33] applied a WSI-based model (viz.
WSISA) to predict survival state in lung cancer as well as in
glioblastoma (c-index 0.7, 0.64 for lung cancer and glioblas-
toma, respectively), although in a limited manner as (i) WSIs
from TCGA with 0.5-μm/pixel (p) resolution were
downloaded, and patches of 512 pixels × 512 pixels (512 ×
512) size were extracted haphazardly, implying that 54% of
the publicly available data was outliers in their analysis, and
(ii) high-level semantic information could not be detected in
their model. Tang et al. [34] also used DCNN-based model
(viz. CapSurv) to predict survival rate in lung and a specific
type of brain cancer (glioblastoma) considering patches of
256 × 256 extracted from WSIs from TCGA and applied a
new loss function, namely, survival loss, to improve the accu-
racy (c-index 0.67) of the predictive model.

In addition to accurate prediction of the patient’s survival,
supervised machine learning–based algorithms are also used
for classification [35, 36] where input values (e.g. an image
associated to clinical record) are assigned to an output class
(e.g. survival within a given time period after diagnosis).
Classifiers offer the possibility of predicting with high accu-
racy the class to which a group of patients belong (e.g. time
period after diagnosis) compared to accurate prediction of the
patient’s survival methods that are less precise and works in-
efficiently. As a novel example, Kolachalama et al. [37] uti-
lized DCNN to classify the survival rate of three types of
kidney cancer based on WSIs. In their model, the inputs were
WSIs without any extracted patches, a computationally very
demanding task, and the outputs were three classes of survival
rates including 1 year, 3 years and 5 years whose results (area
under curve as a classifier evaluator metric) achieve 0.878,
0.875 and 0.904, respectively.

In this work, we use DCNN for classification of brain can-
cer survival using whole slide histopathological images ob-
tained from haematoxylin and eosin(H&E )-stained biopsy
tissue sections, since no models were reported previously for
classification of survival rates of brain cancer patients (see
[38] for a comprehensive review on brain cancer classification
using deep learning methods and MRI imaging). Moreover
and although research is progressing on the molecular deter-
minants that contribute to the development and growth of
brain tumours, including glioblastoma, the most aggressive
form, current classification approaches (either based on histo-
logical and/or genetic tests) do not directly focus on the sur-
vival of patients [1, 2, 10] and have not yet provided a
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complete picture on how “brain cancer type classification” can
be used to predict (i) survival and (ii) response to treatment
and (iii) help the development of more personalized treat-
ments.” In order to address this problem of brain cancer clas-
sification based on survival, we put forwards deep survival
convolutional network (DeepSurvNet) as a novel classifier
approach based on DCNN. Like the other models, we used
patches derived from WSIs as inputs in our model, and we
trained and tested our model based on WSI images available
from TCGA. In addition, we were able to generalize the re-
sults of our model by further applying it to a completely inde-
pendent dataset of H&E images derived from tumour biopsies
collected locally by SA Pathology, the South Australian state
pathology service. Thus, DeepSurvNet allowed us for the first
time to (1) accurately (> 99%) classify brain cancer survival
rate directly from theWSIs and (2) validate our TCGA-trained
model in an independent and local cohort of patients. The
experimental results illustrate that DeepSurvNet model is a
distinguished classifier and open a new horizon in the field
of survival analysis.

2 Methods

2.1 Construction, training and testing of DeepSurvNet

Figure 1 presents the steps (a to h) involved in the construc-
tion, training and testing of DeepSurvNet, which are described
below.

2.1.1 Datasets used for training, testing and validation
of deep learning classifiers (Fig. 1a)

We considered two different datasets for the classifica-
tion of survival rates in patients who suffered from dif-
ferent types of brain cancer including glioblastoma mul-
tiform, mixed glioma, oligodendroglioma and astrocyto-
ma. The first dataset is derived from 490 brain cancer
patients and is publicly available from TCGA [39] and
was used to train and test all the classifier models of
survival rates. It is important to mention that within this
dataset, slides – and therefore WSI – for each patient
contain several tissue sections of the same biopsy, and
all of these were used to train and test the classifiers.
The second dataset was derived from 9 glioblastoma pa-
tients who underwent surgical tumour resection within
the South Australian public hospital system. Tumour bi-
opsy specimens were accessed from archival material
stored at SA Pathology (the state pathology service),
and survival time was calculated based on electronic
medical records. Formalin-fixed paraffin-embedded biop-
sy tissues were sectioned and stained with H&E accord-
ing to standard protocols at SA Pathology and imaged at
0.5-μm/pixel resolution using a Zeiss AxioImager.M2
microscope equipped with an EC Plan-Neofluar 40x/
0.75 M27 Objective and an AxioCam Mrc camera. We
used this dataset for an independent test and to monitor
the efficiency of our model (i.e. this data was not used
for training of the model, for which only TCGA datasets
were used).

Fig. 1 Workflow for construction, training and testing of DeepSurvNet usingH&E-stained histopathological images of brain tumours available at TCGA
(https://portal.gdc.cancer.gov/projects). The accuracy of all the classifier models is dependent on the image preprocessing steps b to d on this
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2.1.2 Patients’ database creation: removing outliers
and extraction of tumour regions of interest (ROIs) from WSIs
(Fig. 1b)

937 WSIs from 490 brain cancer patients were downloaded
from TCGA. These were visually explored, and those
WSIs that are useless for further analysis because they
are corrupted, present marker annotations that cannot be
removed, are of low-resolution or lack of clinical informa-
tion (time of decease after diagnosis) were removed, which
left 654 WSI from 445 cases available for further analysis.
Guided by the pathologist, we further inspect the data for
optimum extraction of several tumour ROIs from each
WSI. The total number of extracted ROIs was 849 from
the 445 cases. We used this result to create a curated data-
base containing all the patients’ clinical output information
including the patients’ ID, mutated genes, and time be-
tween brain cancer diagnosis and disease. This database
is directly related to all the extracted ROIs used in our
work and is available from the authors upon request.

2.1.3 Definition of different classes for survival (Fig. 1c)

For classification, we have considered 4 classes. These classes
are related to the patients’ history of their time between brain
cancer diagnosis to death which was extracted from patients
clinical history available from TCGA. Thus, in classes I, II, III
and IV, there are respectively 217 ROIs (related to patients
with survival time after diagnosis between 0 and 6 months),
210 ROIs (related to patients with survival time after diagnosis
between 6 and12 months), 277 ROIs (related to patients with
survival time after diagnosis between 12 and 24 months) and
145 ROIs (related to patients with survival time after diagnosis
greater than 24 months). Thus, the number of classes and
ROIs in each one is sufficiently large for training the DCNN
classifiers which are known to be extremely data hungry
throughout the training phase [40].

2.1.4 Patch extraction from ROIs and patch standardization
(Fig. 1d)

ROIs allocated to each class are large in size, and processing
them directly is computationally demanding. Thus, for train-
ing and testing purposes, we have extracted ROI subregions or
“patches” of different sizes 256 × 256 (218,760 patches),
512 × 512 (38,963 patches) and 1024 × 1024 (8657 patches)
and compared them to know which can detect more features
from the ROIs. For supervised machine learning tasks (e.g.
classification), each patch is allocated to a class with a specific
label, which results in 4 labels as outputs, and each label is
related to each class. Table 1 shows a summary of the number
of extracted patches with different sizes for each class.

Finally, as TCGA derived images present variable levels of
colour intensities, we standardize their intensities by applying
the following formula to each pixel:

P
0 ¼ P−μ

σ
ð1Þ

where P′ and P are standardized and original patches, respec-
tively. Also, μ and σ are the average and standard deviation of
all values in the original image patch.

2.1.5 Training, validating and testing datasets
and DCNN-based classifiers (Fig. 1e, f)

For each specific patch size extracted from TCGA dataset, we
have divided all the patches into three different cohorts includ-
ing training (80%), validating (18%) and testing (2%). An
example of an early CNN structure can be seen in Fig. 2.
The early basic architectures popularized by AlexNet [41]
loosely follow a pattern of alternating between convolutional
layers (Conv Layer) and pooling layers (Pool Layer). The
intention is to “learn” features from input layers via
convolutional layers and reduce the spatial complexity via
pooling layers. Subsequent iterations of these operations distil
a set of features that are enrolled into a fully connected (FC)
layer which are computed to output classes.

In more modern architectures such as MobileNetV2 [42],
FC layers are largely outdated in favour of 1 × 1 convolutions.
More performant patterns have also been developed such as
residual layers which utilize skip connections introduced in
ResNet50 [43].

2.1.6 Five DCNN-based classifiers for brain cancer survival
rate classification (Fig. 1g)

In order to classify different classes of survival rates based on
different sizes of patches, we have considered the most popu-
lar DCNN classifiers in image recognition task including
VGG19 [44], GoogleNet [45], ResNet50 [43], InceptionV3
[46] and MobileNetV2 [42]. We compared all the results de-
rived from each of these models, and the best-performing
model was then used as the engine for DeepSurvNet.

VGG19 In 2014, Visual Geometry Group (VGG) in the Oxford
University presented A DCNN classifier model named VGG
[44] in the ILSVRC [47] challenge and won the image classi-
fication tasks using the VGG model. There are several archi-
tectures of VGG with different layers, two of which are very
popular. The first one is a 16-layer (VGG16), and the other is a
19-layer (VGG19). We use VGG19 as a classifier for survival
rate classification task in this study.
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GoogleNet In 2014, Szegedy et al. [45] from Google intro-
duced a new conception, namely, Inception, in their article and
called their model GoogleNet. In this 22-layer deep network,
they have applied filters with different sizes 1 × 1, 3 × 3 and
5 × 5 in the Inceptionmodules. The aim of using suchmultiple
convolutions in the Inception modules would be to feature
extraction in different levels. After stacking the outputs of
these filters along the channels, they are ready for further
layers.

ResNet50 In 2015, He et al. from Microsoft introduced the
ResNet architecture and demonstrated that using the residual
modules, we can train very deep convolutional networks with
standard stochastic gradient descent (SGD) method [43].
Among all different kinds of ResNet models, the ResNet50
is very popular since it has simpler structure than the other
forms, a reason why we use it in this study.

InceptionV3 As mentioned earlier, GoogleNet introduced the
Inception architecture or Inception V1. Afterwards, Inception
module was purified in various ways and other architectures
are introduced by Google as Inception vN where N is the
Inception version. The Inception V3 [46] architecture adds
new features to the inception module to increase the accuracy
of the ILSVRC classification task.

MobileNetV2 Another successful approach of DCNN-based
classifiers is MobileNetV2 [42] introduced by Sandler et al.
from Google in 2018. Although MobileNetV2 is a new idea
elicited from MobileNetV1 [48], i.e. using efficient building

blocks through depth wise separable convolution, there are
two new characteristics to the V2 architecture. The first fea-
ture is linear bottlenecks between the layers, and the second is
shortcut connections between the bottlenecks. Since their clas-
sifier has good functionality on benchmarks like ILSVRC, we
have included it as a survival rate classifier for this study.

DeepSurvNet classifier model (Fig. 1h) After the utilization of
five classifiers introduced in the previous part on the different
patch sizes, the best classifier model of survival rate is select-
ed. It should be noted since we have five classifiers and three
different sizes of patches, and the number of models applied
was 15 in total. The best classifier with the highest accuracy
and the lowest loss among all the 15 classifiers is called
DeepSurvNet.

2.2 Evaluation criteria

Several metrics like confusion matrix [49]; the combination of
precision, recall and F-score [50]; and the area under the ROC
curve (AUC) [51] were used for performance evaluation of
our classifiers.

Confusion matrix The confusion matrix summarizes a classi-
fier success in the prediction of examples belonging to differ-
ent classes based on true positives (TP), true negatives (TN),
false negatives (FN) and false positive (FP) values. This table
is used to calculate the other performance metrics, i.e. preci-
sion, recall and Matthews correlation coefficient (MCC).

Table 1 Patch extraction from ROIs for each class

No. of patients No. of ROIs No. of patches (256 × 256) No. of patches (512 × 512) No. of patches (1024 × 1024)

Class I 95 217 49,705 8778 1921

Class II 96 210 53,428 9480 2099

Class III 133 277 74,326 13,287 3004

Class IV 121 145 41,301 7418 1633

Total 445 849 218,760 38,963 8657

Fig. 2 Simple CNN structure
with fully connected layers
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Precision, recall and F-score Precision and recall are defined as
follows:

Precision ¼ TP
TP þ FP

ð2Þ

Recall ¼ TP
TP þ FN

ð3Þ

And F-score is the harmonic average of the precision and
recall:

F−Score ¼ 2 Precision� Recallð Þ
Precisionþ Recallð Þ ð4Þ

The MCC value is a correlation coefficient between the
targets and predicted classifications:

MCC ¼ TP � TNð Þ− FP� FNð Þ
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP þ FPð Þ TP þ FNð Þ TN þ FPð Þ TN þ FNð Þ
p

ð5Þ

Precision, recall and F-score reach their best values at 1 and
worst at 0. MCC of + 1 indicates a perfect prediction and − 1
represents completely disagreement between target and
prediction.

Area under the curve (AUC) and receiver operating character-
istics (ROC) ROC curves combine the true positive rate (TPR
or sensitivity) and false positive rate (FPR or 1-specificity) to
illustrate the classification performance. These twometrics are
defined as follows:

TPR ¼ TP
TP þ FN

ð6Þ

FPR ¼ FP
FP þ TN

ð7Þ

A perfect classifier would achieve higher AUC, and AUC
of 1 means the best classification.

3 Implementation details

In this study, in the preprocessing stage, for WSIs visualiza-
tion and removing outliers, we have used Aperio ImageScope
software. Also, we have initialized our input shapes to 224 ×
224 × 3 channels (224 × 224 × 3) for all of the classifiers.
After several experiences, we found that the best practices
for setting parameters and hyperparameters in training stage
are 30 epochs with stochastic gradient descent (SGD) optimiz-
er, an initial learning rate of 0.01, the momentum of 0.9, learn-
ing rate decay of 0.001 and categorical cross-entropy as loss
function. In order to tackle the overfitting problem, we have
applied the dropout regularization technique. All the networks
were implemented in python with the Keras [52], a high-level
neural networks API running on Tensorflow framework [53],
and trained using four NVIDIA 1080Ti GPUs.

4 Results and discussion

4.1 Survival rate classifiers comparison

Figure 3 shows training accuracy and loss curves in training
phase for different patch sizes (256 × 256, 512 × 512 and

Fig. 3 a Accuracy curves and b loss curves for five classifiers in training phase. Left, patches 256 × 256; middle, patches 512 × 512; and right, patches
1024 × 1024
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Table 2 Comparison between different kinds of DCNN classifiers in the testing phase

CNN model Patch size Class no. Recall F-
score

Precision MCC Avg. Precision Avg. MCC Avg. AUC

VGG19 256 × 256 C1 0.61 0.61 0.61 0.57 0.65 0.62 0.87
C2 0.57 0.59 0.61 0.64
C3 0.64 0.68 0.72 0.61
C4 0.78 0.72 0.66 0.65

512 × 512 C1 0.12 0.18 0.39 − 0.32 0.43 − 0.16 0.54
C2 0.04 0.07 0.75 − 0.21
C3 0.83 0.38 0.25 − 0.07
C4 0.09 0.14 0.32 − 0.06

1024 × 1024 C1 0.00 0.00 0.00 − 0.52 0.42 − 0.48 0.56
C2 0.32 0.36 0.41 − 0.52
C3 0.86 0.42 0.28 − 0.43
C4 0.16 0.28 1.00 − 0.43

MobileNetV2 256 × 256 C1 0.70 0.76 0.84 0.51 0.81 0.54 0.95
C2 0.82 0.80 0.78 0.54
C3 0.81 0.91 0.72 0.54
C4 0.91 0.91 0.91 0.56

512 × 512 C1 0.58 0.54 0.51 0.1 0.59 0.1 0.82
C2 0.60 0.55 0.51 0.1
C3 0.51 0.57 0.65 0.08
C4 0.63 0.66 0.70 0.11

1024 × 1024 C1 0.00 0.00 0.00 − 0.52 0.31 − 0.43 0.53
C2 0.66 0.40 0.28 − 0.37
C3 0.50 0.40 0.33 − 0.37
C4 0.10 0.17 0.62 − 0.47

ResNet50 256 × 256 C1 0.82 0.85 0.87 0.63 0.85 0.64 0.96
C2 0.81 0.86 0.90 0.63
C3 0.82 0.80 0.77 0.63
C4 0.96 0.91 0.87 0.66

512 × 512 C1 0.65 0.64 0.63 0.30 0.71 0.31 0.90
C2 0.72 0.68 0.65 0.32
C3 0.67 0.68 0.69 0.31
C4 0.76 0.81 0.86 0.33

1024 × 1024 C1 0.24 0.33 0.55 − 0.07 0.60 0.04 0.81
C2 0.82 0.57 0.44 0.12
C3 0.50 0.54 0.60 0.04
C4 0.72 0.77 0.84 0.1

InceptionV3 256 × 256 C1 0.86 0.83 0.82 0.66 0.875 0.66 0.97
C2 0.86 0.87 0.90 0.66
C3 0.79 0.81 0.85 0.65
C4 0.95 0.93 0.93 0.66

512 × 512 C1 0.84 0.78 0.73 0.59 0.83 0.58 0.95
C2 0.73 0.75 0.78 0.56
C3 0.77 0.83 0.89 0.57
C4 0.96 0.94 0.92 0.61

1024 × 1024 C1 0.48 0.54 0.62 − 0.52 0.63 − 0.43 0.82
C2 0.50 0.62 0.83 − 0.37
C3 0.76 0.58 0.47 − 0.37
C4 0.60 0.59 0.59 − 0.47

GoogLeNet 256 × 256 C1 0.99 0.99 0.98 0.97 0.99 0.97 1
C2 0.98 0.98 0.99 0.97
C3 0.99 0.99 0.99 0.97
C4 0.99 0.99 0.99 0.96

512 × 512 C1 0.93 0.92 0.92 0.79 0.93 0.80 0.99
C2 0.88 0.92 0.95 0.80
C3 0.94 0.93 0.92 0.83
C4 0.96 0.94 0.93 0.78

1024 × 1024 C1 0.45 0.55 0.69 0.08 0.65 0.13 0.86
C2 0.57 0.62 0.67 0.13
C3 0.78 0.63 0.52 0.23
C4 0.56 0.67 0.82 0.08
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1024 × 1024) for all survival classifiers (note that all classi-
fiers were applied to the same TCGA training patches).
Results using 256 × 256 patch size show that for all classifiers,
this size has improved training accuracy curves (nearly 1) and
the lowest training loss curves (nearly 0) when compared to
the other patch sizes.

Then, in the testing phase, we evaluate the “trained classi-
fiers to the corresponding test set (i.e. a set of patch images of
different sizes)”. During this phase, we calculated confusion
matrix, AUC, and the achieved values for all the evaluator
metrics including recall, precision and F-score for the different
classifiers (Table 2). We found that using GoogleNet led to the

Fig. 4 Five classifiers output on
patches 256 × 256, confusion
matrix in the left side and the area
under ROC in right side for a
VGG19, b MobileNet V2, c
ResNet50, d) Inception V3 and e
GoogleNet
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highest level of ordered pair of (i) average precision and (ii)
average AUC of 0.65 and 0.86, 0.93 and0.99 and 0.99 and1
for 1024 × 1024, 512 × 512 and 256 × 256 patch sizes, respec-
tively. Therefore, DeepSurvNet classifier is powered by
trained GoogleNet on 256 × 256 histopathological patches,
given the highest average precision obtained under these
conditions.

Figure 4 shows the application of the 5 classifiers on 256 ×
256 patch size. In this figure, confusion matrix and AUC have
been depicted confirming that GoogleNet has the highest true
positives and average AUC for four classes in comparison
with the other classifiers. Indeed, classification results of 5
classifiers trained on 256 × 256 patch size for each cross-
validation in 3 different testing folds have been shown in
Table 3. The results show that the highest average indexes
(among all 4 classes) including precision, recall, f1-score
and MCC for all the 3 folds again are related to GoogLeNet.

4.2 DeepSurvNet generalization in unseen (locally
derived) dataset

Having established a pipeline for accurate prediction for the
different classes to which patient’s survival allocate based on
pathological images using DeepSurvNet, we then wanted to
test the accuracy of the model using a completely unseen data,
which is of relevance for those who might also want to apply

this pipeline with already available brain cancer histopatholog-
ical slides. For this, we analysed images of H&E-stained glio-
blastoma tissue sections collected by SA Pathology from 9
patients undergoing tumour resection in local hospitals.
Figure 5 shows the summary of the results. First, H&E histo-
pathological images from each patient (Fig. 5a, b) were
analysed in consultation with the clinical pathologist for the
distinction of those regions that correspond to the tumour.
These ROIs were used to extract 20 patches per patient for
“patch classification” using the TCGA-trained DeepSurvNet
classifier (Fig. 5b). From the different patients, we observe that
the frequency of class prediction per patient was highly biased
towards a single class as would be expected since patches were
derived from the same pathological sample (Fig. 5c, d).
Remarkably, this single class perfectly matches the real class
to which patients belong (9 of 9 patients, Fig. 5d).

We then performed precision analysis based on (i) the anal-
ysis of 20 × 9 = 180 patches derived from these samples (i.e.
without making a distinction to which patient they belong.
Confusion matrix results (Fig. 6) show that the application
of DeepSurvNet to this unseen dataset led to an average global
precision of 80%. This precision was higher for patches be-
longing to class I and class II (80% and 86%, respectively) and
lower for those patches belonging to class III and class IV
(77% and 74%, for which morphological and genetic features
are much more heterogeneous, see below).

Table 3 Classification results of 5
DCNN classifiers trained on
256 × 256 patch size for each
cross validation in 3 different
testing folds

Classification results for 4 classes

Index (avg. on 4 classes) Fold #1 Fold #2 Fold #3 Average

VGG19 Recall 0.61 0.83 0.51 0.65

Precision 0.61 0.84 0.51 0.66

F1-Score 0.61 0.83 0.50 0.65

MCC 0.17 0.56 − 0.05 0.23

MobileNetV2 Recall 0.86 0.85 0.87 0.86

Precision 0.85 0.85 0.87 0.86

F1-Score 0.85 0.85 0.87 0.86

MCC 0.67 0.66 0.68 0.67

ResNet50 Recall 0.84 0.86 0.60 0.77

Precision 0.85 0.86 0.64 0.78

F1-Score 0.84 0.86 0.60 0.58

MCC 0.65 0.68 0.10 0.36

InceptionV3 Recall 0.87 0.87 0.87 0.87

Precision 0.86 0.87 0.87 0.87

F1-Score 0.87 0.87 0.87 0.87

MCC 0.69 0.69 0.70 0.70

GoogLeNet Recall 0.99 0.98 0.98 0.98

Precision 0.98 0.98 0.99 0.98

F1-Score 0.98 0.99 0.99 0.98

MCC 0.97 0.96 0.97 0.97
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4.3 Gene mutation frequency within survival classes

We then sought for better understanding of the underlying
genetic differences associated with each class. For this, we
analysed the distribution of frequency for mutated genes in
the different survival classes using data derived from the
TCGA database (Fig. 7). First, we found that by pooling all
brain cancer data, the most highly mutated genes were PTEN,
TTN, TP53EGFR, PLG and MUC 16 (Fig. 7a). We then
analysed the frequency of mutations within each class and
compared it to the distributions for all patients (Fig. 7b). We
found that the distribution of gene mutations in class I mimics
better than the one from the whole cohort, this being less
obvious for the rest of the classes. This potentially highlights
the underlying genetic differences between the classes and
their impact on patient survival. To gain further insight into
this, we performed a Z-score analysis to test whether there are
highly mutated genes associated to each class by identifying

those genes whose frequency of mutations is higher than 2
standard deviations of the frequency values for the entire set
of genes (Fig. 7c). Interestingly, we found specific genes as-
sociated with each class (class I, PTEN; class II, SPTA1; class
III, TTN; and class IV, TTN and FLG). Of these, the clinical
significance of TTN mutations is limited since high rates of
TTN mutations (passenger mutations) are mostly due to large
size of this protein and variation of mutation rates across the
genome [54]. We were also interested in those mutations that
were different between classes, in particular, those features
that are different between those patients with short and long
survival. For this, we calculated the differences in frequency
of mutations of each class with respect to the frequency of
mutations in class IV, to discover which genes are more often
aberrant in those short survival cancers (compared to those
with long survival) (Fig. 7d). In particular, lack of mutations
of FLG are associated with class I and class II; this adds to the
presence of PTEN and SPTAmutations within these classes to

Fig. 5 DeepSurvNet test on 9 glioblastoma patient samples (a) for which
20 patches were extracted from each sample (b). Patch classification for
each patch in each sample using DeepServNet (c). d Summary of results
and comparison of actual class (blue square) in patients with the

corresponding predictions (3rd column, % of predicted correct classes
based on the analysis of 20 patches; 4th column, class with the highest
number of predicted patches, green square)
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define their signatures. Also, we found that there are no clear
differences between long survival classes (III and IV), which

highlight short survival cancers, like glioblastoma
(Supplementary Table 1), are intrinsically different from those

Fig. 6 a Confusion matrix for total patches, b the area under ROC curve for all patches in four classes and cDeepSurvNet outputs summary for all patches

Fig. 7 Brain cancer–mutated genes expression analysis in the four sur-
vival classes. a 20most effective mutated genes in brain cancer, b number
of patients related to eachmutated genes in each class, c recognition of the

most important gene in each class based on Z-score analysis and d dif-
ferences in frequency of mutations of each class with respect the frequen-
cy of mutations in class IV
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long survival cancers and correlate with our precision analysis
in SA Pathology samples on which accuracy is reduced for
these classes.

From the above analysis of frequency of mutated genes in
brain cancer, it is worth to highlight the identification of flg
mutations in class III and IV patients. The National Cancer
Institute (NCI) is currently developing a new genomics data-
base, the Exceptional Responders Initiative (ERI), to identify
molecular features of patients who have a unique response to
treatments and therefore exhibit long survival rates (i.e. “ex-
ceptional responders”). FLG is a high-affinity receptor of ba-
sic fibroblast growth factor (bFGF), and a recent report by
Wipfler et al. has shown that FLG has a significantly different
distribution of patients affected by somatic nonsynonymous
mutations. Of these, 25% of exceptional responders had one
mutation each in FLG [13]. In contrast, overexpression of
FLG is associated with low immune cell infiltration and short
survival rates in melanoma and ovarian cancer [55], while the
loss of function mutations in FLG is associated with lower
cancer risk in several cancers [56]. This suggests that FLG
mutations in patients with long survival rates confer a prog-
nostic benefit possibly related to immune cell infiltration with-
in the glioma tumour cellular microenvironment, a feature that
can be detected in H&E-stained tissue sections by our image-
based classifier. Similarly, SPTA1 (Spectrin, alpha, erythro-
cytic 1) mutations can led to alterations in H&E-stained tissue
features due to its involvement in the regulation of cortical
actin organization and cell shape as it has been shown in other
cancers [57], although its role in GBM has not been investi-
gated yet. Similar conclusions in relation to the tumour micro-
environment and the differential expression of extracellular
matrix (ECM) proteins (and therefore outside-in cell-ECM
signalling) have been identified to be highly and inversely
correlated to patient’s survival rates [58]. Thus, these obser-
vations suggest that differences in the cellular and noncellular
microenvironment [10] and the way that cancer cells sense it
through adhesion receptors and modulation of the actin cyto-
skeleton (i.e. EMT [59] and invasion [60]) are reflected as key
biological features that could be captured by our image-based
survival rate classifier.

5 Conclusion

We tested the possibility of using H&E-stained brain cancer
histopathological images as input data for patients’ survival
classification using DCNN. In doing so, we compared the
performance of DCNN algorithms using two independent
datasets: the first publicly available in TCGA and the other
generated by ourselves from samples collected in Adelaide.
DeepSurvNet is GoogleNet classifier trained on 200,000 train-
ing samples using TCGA brain cancer dataset. Patches classi-
fication accuracy using DeepSurvNet was of 99% in the

testing phase. Moreover, we found that our model
DeepSurvNet classified > 50% patients’ patches class with
> 90% accuracy and more than > 75% patients’ patches with
75% accuracy and 100% accuracy when considered the single
patient classification based on the total patches per patient.
Moreover, since for each patient the model could classify >
50% of patches in a correct class, we can also say that the
classifier accuracy for 9 patients is 100%.

The analysis of frequency of mutations within these surviv-
al classes shows differences between these in terms of fre-
quency and type of genes associated to patients with different
survival rates, supporting the idea of a different genetic fin-
gerprint associated to patient survival. This highlight that dif-
ferences between short and long survival tumours and the
underlying genetic characterisitcs could be useful not only in
scheduling of treatments but also for the identification of new
targets for glioblastoma. Thus, we conclude that DeepSurvNet
constitute a new AI tool to assess the malignancy of brain
cancer, which could help in the evaluation of patient
treatment.
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