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Regimen-related toxicities remain a priority concern within the field of supportive care in cancer. Despite
this, many forms of toxicity are under reported and consequently poorly characterised. Although there
have been significant improvements in our understanding of regimen-related toxicities, symptom man-
agement continues to occur independently raising concerns such as drug interactions and the tendency to
emphasise management of a single symptom at the expense of others. This review focuses on two impor-
tant toxicities induced by chemotherapy; neuropathy/pain and gastrointestinal toxicity, introducing the
Toll-like receptor (TLR) 4 pathway as a common component of their pathobiology. Given the global obser-
vation of toxicity clusters, identification of a common initiating factor provides an excellent opportunity
to simultaneously target multiple side effects of anticancer treatment. Furthermore, identification of
common biological underpinnings could perhaps reduce polypharmacy and have pharmacoeconomic
benefits.

� 2014 Elsevier Ltd. All rights reserved.
Introduction

Regimen-related toxicities are universally underappreciated
and often seen as the trade-off for remission [1]. Studies suggest
this is due to oncology follow-up clinics focusing on disease recur-
rence whilst rarely addressing symptom management and referral
pathways [1]. While research efforts into supportive care in cancer
have seen significant improvement, regimen-related toxicities are
viewed as biologically independent, but simultaneous events,
perpetuating the silo mentality that typically exists within the sup-
portive care domain. Individual, symptom-oriented therapeutic
strategies also raise some important concerns, such as polyphar-
macy and drug side effects, and the tendency to emphasise
management of a single symptom at the expense of others.
Furthermore, this approach ignores global observations that regi-
men-related toxicities occur in symptom clusters [2] which point
to commonalities in their underlying biology, or at the least,
overlapping mechanisms. In fact, in a retrospective review of
1000 cancer patients admitted for palliative care, each patient
was reported to have greater than 10 symptoms [3,4]. Based on
these observations, we suggest a paradigm shift, moving towards
the idea that toxicities should be approached more holistically
[5], combining efforts of neurologists, gastroenterologists, oncolo-
gists and other leading experts to identify common mechanisms
between these pathologies. This critical review will focus on two
important regimen-related toxicities, neurotoxicity and gastroin-
testinal (GI) toxicity, introducing the Toll-like receptor (TLR) 4
pathway as a common component of their pathobiology.

Neurotoxicity is a poorly characterised, dose limiting side effect
of chemotherapy treatment [6] with symptoms typically falling
under three broad categories, cognitive dysfunction, fatigue and
neuropathy. Most commonly associated with platinum compounds
(cisplatin and oxaliplatin), spindle poisons/antitubulins
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(vincristine and paclitaxel) and the newer targeted agents such as
the proteasome inhibitors (bortezomib, ixabepilone, thalidomide)
[7,8], heightened pain perception (hyperalgesia) and allodynia
remain under reported and ill-defined side effects of chemother-
apy. Given the profound personal impact of these neurological
symptoms, chemotherapy-induced neurotoxicity is now consid-
ered a priority concern within the oncology arena, bringing
together oncologists and neurologists to shed light on the mecha-
nisms that underlie this pathology. Recent neuroimaging tech-
niques suggest performance changes in neurological function
occur in a subset of cancer patients, and that these changes may
be associated with structural and functional alterations in the
brain [9]. However, the molecular mechanism(s) involved in che-
motherapy-induced neurotoxicity, specifically heightened pain
perception (chemoneuropathy), remain unclear and poorly stud-
ied. Recent speculation has led to several candidate mechanisms
for neurotoxicity including oxidative stress, inflammation and
DNA damage [10,11]. It has also been proposed that some cytotoxic
agents may damage neurons through binding to axonal microtu-
bules to subsequently alter axonal transport [12]. This is however
contradicted by a wealth of evidence showing no morphological
changes in centrally-located neurons following various cytotoxic
insults [13,14]. The lack of pathological changes observed in these
neurons suggests that direct cytotoxicity is not sufficient to fully
account for the range and severity of neurological symptoms expe-
rienced by patients, and more complex mechanisms are likely to be
involved.

It has been suggested that systemic proinflammatory and
immune factors released following chemotherapy [15,16] cause
localised glial activation to further exacerbate neuronal responses
and potentiate pain [17]. Glia have long been overlooked for their
role in pain signaling, viewed only as structural supports of neu-
rons of the CNS. It was not until the early 1990’s when the actions
of glia in varying pain states were appreciated and it is now a well-
documented component of neuropathic pain [17,18]. The most
recent advent in the area of glia-mediated nociception is the role
of the Toll-like receptor (TLR) family, specifically TLR4. TLRs are a
family of transmembrane protein receptors that recognise a
diverse range of signals on exogenous and endogenous substances
considered to be danger signals, and hence warrant activation of
the innate immune system for the survival of the host [19]. TLR4
has been most extensively characterised as it recognises lipopoly-
saccharide (LPS) from gram-negative bacteria. TLR4 agonists acti-
vate similar downstream intracellular signaling pathways to
those previously documented for interleukin (IL)-1, binding to its
co-receptor, activating nuclear factor kappaB (NFjB) and resulting
in a powerful proinflammatory cascade [20].

In addition to severe neurotoxicity, chemotherapy is also recog-
nised for causing severe gastrointestinal side effects. Gut toxicity is
often a dose-limiting manifestation of chemotherapy treatment
that affects a large proportion of patients, dependent on the dose
of chemotherapy administered [21]. Clinically, chemotherapy-
induced gut toxicity (CIGT) is associated with severe gastrointesti-
nal symptoms such as diarrhoea, infection and rectal bleeding [1].
Characterised by severe ulceration, inflammation and pain, CIGT
has recently been implicated with glial activation [22], elevated
proinflammatory cytokines (IL-1b IL-6, TNF) [15] and, importantly,
excessive TLR4 activation [23]. Like the CNS, the enteric nervous
system is comprised of neurons and glia [24]. The traditional role
of glia has also been challenged in the enteric nervous system with
research suggesting that enteric glia are capable of regulating gas-
trointestinal homeostasis, and critically, transmission of sensory
information from the gut to the CNS [25–27]. It is therefore tangi-
ble to suggest that peripheral toxicity, such as CIGT, may drive glial
activation and thus exacerbate neuronal damage and pain
perception.
Indirect neuromodulation through glial activation

The emerging role of glia in neuropathic pain

Glia is the collective term used to describe both astrocytes and
microglia, the key supportive cells of the CNS. Traditionally, glia
were viewed as structural supports for neurons, providing typically
homeostatic roles including immune surveillance, clearance of
debris, regulation of the ionic and chemical composition of the
extracellular matrix and maintenance of blood brain barrier
(BBB) integrity; glia are therefore considered pivotal to not only
CNS homeostasis but also the survival of the host [18]. It was not
until the early 1990’s where these static, neurosupportive roles
of glia were challenged and their roles under varying pain states
acknowledged [28]. This paradigm shift in our understanding of
glia followed early evidence showing an associative link between
astrocyte activation and neuropathic pain [28]. The earliest
evidence came from Garrison et al. (1991) where significantly
elevated glial fibrillary acidic protein (GFAP) staining in the lumbar
spinal cord was noted following sciatic nerve constriction. Garrison
and colleagues furthered this work in 1994, showing activated glia
in neuropathic animals [29]. Importantly, when an N-methyl-D-
aspartate (NMDA) receptor inhibitor – MK-801 – was applied, both
glial activation and neuropathic pain were improved. Several
studies also report comparable changes in glial activity in various
preclinical models of neuropathic pain [28,30,31] and subse-
quently glia are considered a vital step in its pathobiology.

It is now well established that glia have two distinct states; a
quiescent basal state and an activated state. Microglia have a clas-
sic quiescent phenotype under normal pain responses, responsible
for surveying the extracellular space in search of potential danger,
but producing no neuroexcitatory substances [32]. In contrast,
astrocytes are active players in synaptic signaling even under basal
conditions. They maintain house-keeping functions, providing
energy sources and neurotransmitter precursors to neurons, clean-
ing debris and resorbing excess neurotransmitters. Upon activa-
tion, these glia shift from their basal state, to an activated state
characterised by a reactive, proinflammatory response profile
[17]. A variety of glial activation signals have been identified, some
of which are very well characterised including neuronally released
fractalkine and traditional neuronal nociceptive modulators and
transmitters, such as reactive oxygen species (ROS), nitric oxide,
prostaglandins, excitatory amino acids, substance P and proinflam-
matory cytokines [33]. Upon activation, glia release substances
(ROS, nitric oxide, prostaglandins, proinflammatory cytokines) that
increase neuronal excitability, leading to pain enhancement. These
neuroexcitatory mediators directly enhance neuronal excitability
[33,34], increase pain associated neurotransmitter release from
sensory afferents [35], upregulate the number and conductance
of calcium permeable a-amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA) and NMDA receptors [36] and downregu-
late expression of glial glutamate transporters; all of which
potentiate pain [37].

Although this mechanism of pain potentiation is well described
in the setting of peripheral nerve damage, limited data exists
regarding its role in chemotherapy-induced pain. Of the limited
data, both microgliosis and astrocytosis are reported following
administration of vincristine, paclitaxel, bortezomib and oxalipla-
tin [38–42]. Robinson et al. (2014) characterised patterns of glial
activation in response to chemotherapy and typical spinal nerve
ligation [42]. Consistent with previous peripheral nerve injury
models, microglia activation was evident following spinal nerve
ligation, but not chemotherapy administration. In contrast, astro-
cytes were activated following both oxaliplatin and bortezomib
treatment in a manner that paralleled chemotherapy-evoked
behavioural changes. Despite this disparity, the behavioural
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phenotype and activation of astrocytes were prevented by co-
administration of minocycline hydrochloride – a microglial inhibi-
tor – in both models, suggesting a common mechanism between
both neuropathies. Similarly, Ji et al. (2013) reported significant
astrocytic hypertrophy and activation, demonstrated by increased
glial GFAP expression in the dorsal horn of vincristine-treated rats
with mechanical allodynia [38]. This was coupled by increased
astrocytic expression of IL-1b and phosphorylation of the NMDA
receptor in spinal dorsal horn neurons. Importantly, treatment
with pentoxifylline, an anti-inflammatory agent and an IL-1R
antagonist, attenuated phosphorylation of NMDA receptors and
mechanical allodynia. Most recently, oxaliplatin treatment was
also associated with microglia activation, however this was only
transient [40]. Microglia displayed a highly ramified phenotype,
similar to that of vehicle-treated animals. The number of GFAP-
expressing cells in the dorsal horn superficial laminae was signifi-
cantly increased in oxaliplatin treated animals at 1, 2 and 3 weeks
following treatment, correlating with the pain-profile. Importantly,
although application of minocycline attenuated pain and glial acti-
vation, the efficacy of fluorocitrate – an astrocyte inhibitor – was
significantly greater. Together, these studies highlight that glial
activation, specifically astrocyte activation, is an important compo-
nent of chemoneuropathy and associated pain. Despite these
promising findings, the initiating factor for glial activation follow-
ing chemotherapy remains unclear. One potential candidate is the
release of endogenous danger signals. Several neurological condi-
tions such as peripheral nerve damage have been shown to elicit
the release of these endogenous danger signals [43] which commu-
nicate cellular/tissue damage and/or stress independent of the
release of classic neurotransmitters or neuromodulators [17]. On
release of these danger signals, the innate immune pattern recog-
nition receptor, TLR4, causes activation of TLR4-expressing cells
including both microglia and astrocytes [17]. Given the extensive
peripheral tissue damage observed following cytotoxic treatment,
TLR4-mediated glial activation therefore presents as a novel path-
way in the pathobiology of chemoneuropathy.

TLR4-mediated glial activation
TLRs are a family of approximately ten single transmembrane

receptors that recognise a diverse range of moieties or ‘patterns’
on exogenous and endogenous substances considered to be danger
signals, and hence warrant activation of the innate immune system
[18]. Of the many TLR subtypes, TLR4 has been most extensively
characterised with established roles in the host immune response.
When activated, typically by lipopolysaccharide (LPS), TLR4
recruits adaptor molecules and kinases, initiating a downstream
signaling cascade that culminates in the secretion of proinflamma-
tory cytokines and chemokines [44–46]. This signaling cascade can
be MyD88-dependent or -independent, with the MyD88-depedent
pathway most commonly associated with translocation of NFjB
and proinflammatory cytokine secretion. MyD88-dependent sig-
naling typically requires the adaptor proteins TIRAP (TIR domain
containing adaptor protein) and MyD88 to initiate the rapid pro-
duction of proinflammatory cytokines, chemokines and their
receptors TNF, IL-1a, IL-1b, IL-1ra, IL-6, IL-8, IL-10, IL-12p40, IL-
23, macrophage inflammatory protein (MIP)-1a, and MIP-1b [47].
These factors facilitate the inflammatory response by increasing
vascular permeability, directing dendritic cells and initiating mac-
rophage migration from the periphery [48]. In contrast, the inde-
pendent signaling pathway is reliant on Toll-like receptor
adaptor molecule (TICAM)-1, -2, the TIR-domain-containing adap-
tor inducing interferon-b (TRIF) or TRIF-related adaptor molecule
(TRAM) resulting in the production of interferon-b and
chemokines.

In addition to the well-documented roles of TLR4 signaling in
the host immune response, recent evidence has also linked this
immune receptor to a number of neurodegenerative disorders such
as Alzheimer’s and Parkinson’s disease [44]. TLR4 expression in the
CNS was, until recently, limited to microglia, astrocytes and oligo-
dendrocytes. Recent evidence has now shown that TLR4 is
expressed on CNS structures exposed to the blood stream such as
the choroid plexus, circumventricular organs and leptomeninges.
This newly emerging distribution of TLR4 expression may there-
fore explain the innate immune response observed in the brain,
which originates from areas devoid of a blood–brain barrier [49].
Furthermore, recent evidence has shown altered neuronal TLR4
expression in response to ischaemia/reperfusion [50]. This is fur-
ther supported by knockout studies, where the extent of energy
deprivation-induced cell death and associated neurological deficit
were significantly reduced in TLR4 deficient mice compared to
wild-type [51].
TLR4 in the central nervous system
There is accumulating evidence that TLR4 contributes to neuro-

nal death, BBB damage and inflammatory responses in the brain
[52,53]. Consequently, TLR4 has been implicated with several
CNS pathologies, particularly those characterised by neuroinflam-
mation and subsequent degeneration. It has been postulated that
TLR4-mediated NFjB signaling plays a critical role in the
development of neuroinflammation, leading to the secretion of
proinflammatory cytokines, chemokines and enzymes such as
cyclooxygenase (COX)-2 and matrix metalloproteinases (MMPs)
[54,55]. Furthermore, it is suggested that these neuroinflammatory
mediators are able to activate microglia leading to neuronal excita-
tion or neuronal loss [56,57]. In fact, this phenomenon was
recently demonstrated in the setting of Alzheimer’s disease; a neu-
rodegenerative disease characterised by microgliosis. Importantly,
activated microglia have been identified surrounding senile plaque
in the brains of Alzheimer’s disease patients and have been shown
to express increased levels of TLR4 [58]. Additionally, treatment of
microglia with senile plaque material was shown to induce sharp
peaks in the mRNA expression of many TLR subtypes, including
TLR4, when compared with age-matched plaque-free tissue [59].
It is therefore suspected that TLR4-mediated glial activation results
in the production of nitric oxide, oxygen derived free radicals, pro-
teases, adhesion molecules and proinflammatory cytokines which,
when produced in excess, have detrimental effects on neuronal
homeostasis and contribute to the development of neurodegener-
ative conditions such as Alzheimer’s disease [60].

In addition to Alzheimer’s disease, TLR4 signaling has gained
momentum regarding the pathobiology of Parkinon’s disease; a
chronic, neurodegenerative condition characterised by loss of
dopaminergic neurons in the substantia nigra pars compacta and
the striatum of the basal ganglia [61]. Although the mechanisms
responsible for Parkinson’s disease remain unclear, emerging evi-
dence suggests a neuroinflammatory component to the condition
[62]. The presence of cytoplasmic alpha-synuclein (AS), or Lewy
bodies, is the hallmark trait of Parkinson’s disease and the subject
of significant molecular research. Stefanova and colleagues (2007)
were the first to show elevated levels of TLR4 in AS cytoplasmic
inclusions [63]. These findings have since been extended with
research now showing that TLR4 is essential for the AS-dependent
activation of microglia, leading to the production of proinflamma-
tory cytokines and ROS [64]. Importantly, this mechanism is
unique to microglia, with astrocytic uptake of AS shown to be
TLR4-independent. In contrast, the role for TLR4 in Parkinson’s dis-
ease is confounded by evidence showing that genetic TLR4 deletion
results in reduced phagocytic activity of microglia, leading to
heightened AS accumulation and exacerbated neurodegeneration
[65,66]. These results suggest that despite initiation of an inflam-
matory response, TLR4-mediated glial activation may be important
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in the clearance of AS, thus exerting a protective effect in Parkin-
son’s disease.

TLR4 and neuropathic pain
TLR4 has received significant attention for its roles in several

neuroinflammatory disorders characterised by neurodegeneration.
In addition to these emerging roles, TLR4 has also gained momen-
tum for its role(s) in modulating neuropathic pain. Within the CNS,
TLR4 is predominantly expressed by microglia, but expression may
be upregulated on astrocytes under neuroinflammatory settings
[67]. TLR4 appears to be directly relevant to the pathobiology of
neuropathic pain, as it recognises and responds to endogenous
danger signals, and thus has the ability to modulate pain signaling.
TLR4 knockout and knockdown studies have demonstrated this
emerging role for TLR4, with knockout/knockdowns suppressing
the development and/or maintenance of nerve injury-induced allo-
dynia [68–71]. Additionally, administration of a selective TLR4
antagonist has been shown to suppress well-established neuro-
pathic pain induced by chronic constriction injury [18]. In the set-
ting of chemoneuropathy, recent research has shown that
paclitaxel treatment is associated with elevated TLR4 expression
and glial activation in the dorsal root ganglion. Additionally, appli-
cation of both TLR4 and MyD88 antagonists significantly reduced
peripheral neuropathy and associated pain [39]. Taken together,
these studies suggest that ongoing TLR4 activation and peripheral
endogenous danger signaling is at the core of neuropathic pain,
and may therefore contribute to the development of chemoneur-
opathy and its associated clinical features.

Peripheral tissue damage activates central TLR4
Although the development of neuropathic pain through TLR4

activation is most extensively characterised in the setting of
Fig. 1. Peripheral inflammation modulates central pain signaling through TLR4. Here we p
chemotherapy-induced damage, are able to cross the blood brain barrier and enter the C
CNS, causing extensive glial activation. Upon activation, glia release substances that in
mediators directly enhance neuronal excitability, increase pain associated neurotransm
calcium permeable AMPA and NMDA receptor and downregulate expression of glial glu
peripheral nerve injury, the production of these endogenous dan-
ger signals and other TLR4 ligands is not unique to this form of tis-
sue damage. In fact, it is well established that chemotherapy
treatment causes significant gut toxicity, which is characterised
by excessive production of endogenous danger signals (pathologi-
cal- and danger-associated molecular patterns; PAMPs/DAMPS)
[43]. In addition to this, recent research has shown enterocyte-
expressed TLR4 is intimately involved in the initiation of gut toxic-
ity following chemotherapy treatment, activating NFjB and
mounting an immune response [72]. Given that TLR4 is activated
by endogenous danger signals, centrally-located TLR4 and glia
are well positioned to enhance pain resulting from inflammation
in the periphery such as gut toxicity following chemotherapy.
We therefore hypothesise that the molecular signals derived from
gastrointestinal toxicity drive glial activation and subsequent neu-
ropathy in a TLR4-dependent manner (Fig. 1). This pathway
appears to be initiated by damage that originates in the periphery,
and thus the pathobiology of chemoneuropathy may point to the
existence of a gut-CNS axis.

The existence of a gut-CNS axis is not a new phenomenon [73].
Based on paralleled comorbidities of gastrointestinal and neurolog-
ical origin, there has been an appreciation gained for the existence
of a gut-CNS axis and the roles it may play in governing neurolog-
ical function [74,75]. While candidate mechanisms of the gut-CNS
axis include neural, endocrinal and immune pathways, the gut
microbiota has emerged as a predominant player, although the
mechanisms underpinning the gut-CNS axis remains unclear
[76]. Although a wealth of data exists supporting a role for the
gut microbiota in modulating neurological function, there is evi-
dence to suggest that immune cells produced within the gut may
also exhibit neuromodulatory effects [77]. Disruption of the
homeostatic state between the microbiota and the innate mucosal
roposed that inflammatory mediators, released from the gastrointestinal tract upon
NS. These mediators are potent ligands for TLR4, located on glial cells through the
crease neuronal excitability, leading to pain enhancement. These neuroexcitatory
itter release from sensory afferents, upregulate the number and conductance of

tamate transporters; all of which potentiate pain.



Fig. 2. Independent and common mechanisms of gastrointestinal and neurotoxicity.
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immune system of the host has been shown to result in activation
of TLRs and consequent alteration of cytokine profiles, leading to
impaired neurological function. It is suggested that these immune
cells disrupt the BBB and upon crossing, are subsequently reacti-
vated within the CNS. This phenomenon was recently demon-
strated in mice receiving peripheral surgery, displaying BBB
disruption and elevated TNF signaling which facilitated macro-
phage migration into the hippocampus and subsequent neurologi-
cal decline [78]. Additionally, administration of proinflammatory
cytokines in rodents has been reported to induce depressive like
symptoms, disrupted circadian rhythm and reduced appetite
[79,80]. Although a gut-CNS axis has not been applied to the
setting of chemotherapy-induced pain, these results support the
hypothesis that CIGT is able to modulate CNS homeostasis, and
may contribute to the development of chemoneuropathy.
Furthermore, TLR4 may be uniquely positioned to modulate
inflammatory responses in both the gut and CNS thus contributing
to both toxicities and it therefore presents as an attractive
therapeutic target.
Clinical translation

There is strong evidence suggesting that peripheral toxicity
drives glial activation through TLR4 signaling; this review has
highlighted evidence using the examples of CIGT and pain. Where
the complexity lies is the sequence of these toxicities. Identifying
whether these toxicities occur in unison or sequentially will shed
light on the role of TLR4 as a common underlying mechanism. It
is likely that TLR4-mediated pain is agent specific, and may be a
case where one size, on a theoretical basis, does not fit all. For
example, the clinical observation of neuropathy is rare amongst
patients being treated with agents typically associated with high
rates of gut toxicity (irinotecan, 5-fluorouracil, methotrexate), indi-
cating potential independent mechanisms (Fig. 2). However, the
hypothesis of dual-toxicities of common biology is compelling
with regards to the clinical use proteasome inhibitors (bortezomib,
thalidomide, ixabepilone, ixazomib) [81–83] and taxanes (paclit-
axel, docetaxel) [84–86], which commonly induce toxicities of both
gastrointestinal and neurological origin, raising the question of
equivalent risk.
Conclusions and future directions [87]

Regimen-related toxicities remain a priority concern within the
field of supportive care in cancer. Despite this, many forms of tox-
icity are under reported and consequently poorly characterised.
This holds particularly true for chemotherapy-induced gastrointes-
tinal toxicity and neurotoxicity, specifically the symptom of pain.
This review has highlighted TLR4 signaling as a common underly-
ing pathway of both toxicities. Given the global observation of tox-
icity clusters, identification of a common initiating factor would
provide an excellent opportunity to simultaneously target multiple
side effects of anticancer treatments. Despite strong epidemiolog-
ical evidence highlighting toxicity clusters, it remains unclear
why some patients are more susceptible to severe toxicity. Evi-
dence has shown TLR4 gene mutations (Thr399lle) contribute to
the severity of acute Graph versus Host Disease, influencing the
risk in patients undergoing allogenic transplantation [88]. The
TLR4 Asp299Gly polymorphism has also been identified as a risk
factor for Crohn’s disease potentially contributing to disease
phenotype [87]. This emerging hypothesis for TLR4-mediated
toxicities could therefore have the potential to drive biomarker
development and risk evaluation techniques, presenting an
attractive avenue for future research. Furthermore, identification
of common biological underpinnings could perhaps reduce poly-
pharmacy, lessen drug side effects, and have pharmacoeconomic
benefits.

The ubiquitous involvement of the innate immune system in
regimen-related toxicity makes TLR4 an overlooked candidate in
the pathophysiology of other dose-limiting side effects of
chemotherapy. For example, recent speculation suggests that
proinflammatory cytokines are able to disrupt the hypothalamic–
pituitary–adrenal (HPA) axis, to alter circadian rhythm and thus
induce fatigue – an established side effect of chemotherapy [89].
In fact, decreased circulating levels of serum cortisol have been
reported immediately following treatment with the platinum com-
pounds cisplatin and carboplatin [89], indicating impaired HPA
axis function [90,91]. Given the role of TLR4 in neuroinflammation,
it is conceivable that activation of enterocyte-expressed TLR4 initi-
ates the induction of a ‘cytokine storm’ which is able to modulate
the CNS and thus impact on the function of the HPA axis. Activation
of TLR4 may therefore be the missing link in the initiation of this
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cascade where circulating proinflammatory cytokines can access
the CNS and exert profound effects on behaviour and cognitive
function. The induction of this ‘cytokine storm’ appears to be pre-
dominantly initiated by the activation of TLR4 in the gut – the largest
immunological organ – and must therefore be adequately
acknowledged if we are to adopt a holistic approach to toxicity.
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